--- library_name: transformers base_model: google/muril-large-cased tags: - generated_from_trainer model-index: - name: muril-large-cased-tweet-devnagri-grouped results: [] --- # muril-large-cased-tweet-devnagri-grouped This model is a fine-tuned version of [google/muril-large-cased](https://huggingface.co/google/muril-large-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4110 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:------:|:---------------:| | No log | 0.0478 | 5000 | 2.5496 | | No log | 0.0955 | 10000 | 2.1840 | | No log | 0.1433 | 15000 | 2.0172 | | No log | 0.1910 | 20000 | 1.9188 | | No log | 0.2388 | 25000 | 1.8525 | | No log | 0.2865 | 30000 | 1.8047 | | No log | 0.3343 | 35000 | 1.7694 | | No log | 0.3820 | 40000 | 1.7406 | | No log | 0.4298 | 45000 | 1.7076 | | No log | 0.4775 | 50000 | 1.6848 | | No log | 0.5253 | 55000 | 1.6713 | | No log | 0.5730 | 60000 | 1.6543 | | No log | 0.6208 | 65000 | 1.6364 | | No log | 0.6685 | 70000 | 1.6226 | | No log | 0.7163 | 75000 | 1.6103 | | No log | 0.7640 | 80000 | 1.5976 | | No log | 0.8118 | 85000 | 1.5925 | | No log | 0.8595 | 90000 | 1.5883 | | No log | 0.9073 | 95000 | 1.5763 | | No log | 0.9550 | 100000 | 1.5581 | | 1.9195 | 1.0028 | 105000 | 1.5774 | | 1.9195 | 1.0505 | 110000 | 1.5507 | | 1.9195 | 1.0983 | 115000 | 1.5728 | | 1.9195 | 1.1460 | 120000 | 1.5328 | | 1.9195 | 1.1938 | 125000 | 1.5265 | | 1.9195 | 1.2415 | 130000 | 1.5199 | | 1.9195 | 1.2893 | 135000 | 1.5216 | | 1.9195 | 1.3370 | 140000 | 1.5098 | | 1.9195 | 1.3848 | 145000 | 1.5061 | | 1.9195 | 1.4325 | 150000 | 1.4985 | | 1.9195 | 1.4803 | 155000 | 1.4943 | | 1.9195 | 1.5280 | 160000 | 1.4933 | | 1.9195 | 1.5758 | 165000 | 1.4853 | | 1.9195 | 1.6235 | 170000 | 1.4778 | | 1.9195 | 1.6713 | 175000 | 1.4797 | | 1.9195 | 1.7190 | 180000 | 1.4702 | | 1.9195 | 1.7668 | 185000 | 1.4958 | | 1.9195 | 1.8145 | 190000 | 1.4683 | | 1.9195 | 1.8623 | 195000 | 1.4748 | | 1.9195 | 1.9100 | 200000 | 1.4560 | | 1.9195 | 1.9578 | 205000 | 1.4553 | | 1.5744 | 2.0055 | 210000 | 1.4431 | | 1.5744 | 2.0533 | 215000 | 1.4432 | | 1.5744 | 2.1010 | 220000 | 1.4446 | | 1.5744 | 2.1488 | 225000 | 1.4407 | | 1.5744 | 2.1965 | 230000 | 1.4454 | | 1.5744 | 2.2443 | 235000 | 1.4371 | | 1.5744 | 2.2920 | 240000 | 1.4351 | | 1.5744 | 2.3398 | 245000 | 1.4291 | | 1.5744 | 2.3875 | 250000 | 1.4293 | | 1.5744 | 2.4353 | 255000 | 1.4245 | | 1.5744 | 2.4830 | 260000 | 1.4253 | | 1.5744 | 2.5308 | 265000 | 1.4305 | | 1.5744 | 2.5785 | 270000 | 1.4221 | | 1.5744 | 2.6263 | 275000 | 1.4181 | | 1.5744 | 2.6740 | 280000 | 1.4146 | | 1.5744 | 2.7218 | 285000 | 1.4149 | | 1.5744 | 2.7695 | 290000 | 1.4131 | | 1.5744 | 2.8173 | 295000 | 1.4155 | | 1.5744 | 2.8650 | 300000 | 1.4137 | | 1.5744 | 2.9128 | 305000 | 1.4119 | | 1.5744 | 2.9605 | 310000 | 1.4070 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0