--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: google/mt5-base metrics: - bleu - rouge model-index: - name: mt5-base-ICFOSS-malayalam_Hindi_Translator results: [] --- # mt5-base-ICFOSS-malayalam_Hindi_Translator This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2179 - Bleu: 6.2035 - Rouge: {'rouge1': 0.2667970960136926, 'rouge2': 0.14574925525428614, 'rougeL': 0.26511828595423204, 'rougeLsum': 0.26501665904942706} - Chrf: {'score': 23.454551827072866, 'char_order': 6, 'word_order': 0, 'beta': 2} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Chrf | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------:| | 2.5515 | 1.0 | 4315 | 1.2874 | 5.8306 | {'rouge1': 0.2660910934739513, 'rouge2': 0.14404792849379128, 'rougeL': 0.26384549634107013, 'rougeLsum': 0.2637751499455684} | {'score': 22.571342084258088, 'char_order': 6, 'word_order': 0, 'beta': 2} | | 1.9143 | 2.0 | 8630 | 1.2319 | 6.1128 | {'rouge1': 0.263256301663898, 'rouge2': 0.14256738224583015, 'rougeL': 0.261282034035635, 'rougeLsum': 0.2613517649673947} | {'score': 23.235214776547263, 'char_order': 6, 'word_order': 0, 'beta': 2} | | 1.8644 | 3.0 | 12945 | 1.2192 | 6.2145 | {'rouge1': 0.2670714744552978, 'rouge2': 0.14606073298261613, 'rougeL': 0.2652594809906982, 'rougeLsum': 0.26489596193447795} | {'score': 23.438449086905997, 'char_order': 6, 'word_order': 0, 'beta': 2} | | 1.8539 | 4.0 | 17260 | 1.2179 | 6.2043 | {'rouge1': 0.26678061058524805, 'rouge2': 0.14565482302690236, 'rougeL': 0.26489350144733725, 'rougeLsum': 0.26477198178581135} | {'score': 23.464895899326955, 'char_order': 6, 'word_order': 0, 'beta': 2} | | 1.8525 | 5.0 | 21575 | 1.2179 | 6.2035 | {'rouge1': 0.2667970960136926, 'rouge2': 0.14574925525428614, 'rougeL': 0.26511828595423204, 'rougeLsum': 0.26501665904942706} | {'score': 23.454551827072866, 'char_order': 6, 'word_order': 0, 'beta': 2} | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1