Experimental model focused on RP and storytelling. This method attempts to bring some of the intrigue and style of the base model back into the instruct model. This is a model trained in four stages (Use with Llama-8B-Instruct or Llama-8B-Instruct abliterations) Base Model -- 1 Gig of semi-structured pretraining data (Uniform distribution centered around 4096 ctx length, b/w 512-8192) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/637f3b03932a61b89aefbf5c/hpdbVRrM1yt65-gNtRIfT.png) - Base pretraining phase 1 (Constant LR, text completion -- 20,000 steps 2/3 epoch) - Base pretraining phase 2 (Cosine LR, text completion -- 10,000 steps 1/3 epoch) Merge LORA into instruct model -- 100 MB of structured story-instruct data (All samples attempt to be near 8192 ctx fullsize instructions) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/637f3b03932a61b89aefbf5c/V1Jf07k8JdI0_OzIDc7FF.png) - Story-instruct tune phase 1 (Constant LR, ~1250 steps, 1 epoch) - Story-instruct tune phase 2 (Cosine LR, ~1250 steps, 1 epoch) Trained using Rough script: ```python model = FastLanguageModel.get_peft_model( model, r = 64, target_modules = ["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], lora_alpha = 32, lora_dropout = 0.05, # 0 for base pretraining bias = "none", use_gradient_checkpointing = "unsloth", random_state = 3407, max_seq_length = max_seq_length, use_rslora = True, loftq_config = None, ) trainer = SFTTrainer( model = model, train_dataset = train_dataset, dataset_text_field = "text", max_seq_length = max_seq_length, tokenizer = tokenizer, args = TrainingArguments( per_device_train_batch_size = 2, warmup_steps = 45, num_train_epochs=2, #1 for base-pretraining fp16 = not torch.cuda.is_bf16_supported(), bf16 = torch.cuda.is_bf16_supported(), logging_steps = 15, logging_dir="logs", report_to="tensorboard", output_dir = "outputs", save_strategy=IntervalStrategy.STEPS, save_steps=100, save_total_limit=30, optim = "adamw_torch_fused", lr_scheduler_type="cosine", # <- Changed over time learning_rate=5e-5, weight_decay=0.10, # .15 for base pretraining adam_beta1=0.88, # .9 for base pretraining adam_beta2=0.99, # .999 for base pretraining ), ) ```