BachhoangVnist
commited on
Commit
•
d7bdc80
1
Parent(s):
e101c9c
init embedding model
Browse files- .gitattributes +4 -0
- 1_Pooling/config.json +9 -0
- README.md +168 -0
- added_tokens.json +3 -0
- bpe.codes +0 -0
- config.json +28 -0
- config_sentence_transformers.json +7 -0
- custom_tokenizer.py +11 -0
- model.safetensors +3 -0
- modules.json +14 -0
- pipeline.py +76 -0
- pytorch_model.bin +3 -0
- requirements.txt +1 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +9 -0
- tokenizer_config.json +54 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
37 |
+
.git/lfs/objects/cb/fa/cbfae04cc7f3063949a7d81258e185cd31249892768c15e27b70d4797f42b902 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
39 |
+
.git/lfs/objects/2d/81/2d8135cb6ff79bf4303fb0afd11808791c9123ae8ee753fccd480207e347963e filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
+
}
|
README.md
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
library_name: generic
|
9 |
+
language:
|
10 |
+
- vi
|
11 |
+
widget:
|
12 |
+
- source_sentence: Làm thế nào Đại học Bách khoa Hà Nội thu hút sinh viên quốc tế?
|
13 |
+
sentences:
|
14 |
+
- >-
|
15 |
+
Đại học Bách khoa Hà Nội đã phát triển các chương trình đào tạo bằng tiếng
|
16 |
+
Anh để làm cho việc học tại đây dễ dàng hơn cho sinh viên quốc tế.
|
17 |
+
- >-
|
18 |
+
Môi trường học tập đa dạng và sự hỗ trợ đầy đủ cho sinh viên quốc tế tại Đại
|
19 |
+
học Bách khoa Hà Nội giúp họ thích nghi nhanh chóng.
|
20 |
+
- Hà Nội có khí hậu mát mẻ vào mùa thu.
|
21 |
+
- Các món ăn ở Hà Nội rất ngon và đa dạng.
|
22 |
+
license: apache-2.0
|
23 |
+
---
|
24 |
+
|
25 |
+
# bkai-foundation-models/vietnamese-bi-encoder
|
26 |
+
|
27 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
28 |
+
|
29 |
+
We train the model on a merged training dataset that consists of:
|
30 |
+
- MS Macro (translated into Vietnamese)
|
31 |
+
- SQuAD v2 (translated into Vietnamese)
|
32 |
+
- 80% of the training set from the Legal Text Retrieval Zalo 2021 challenge
|
33 |
+
|
34 |
+
We use [phobert-base-v2](https://github.com/VinAIResearch/PhoBERT) as the pre-trained backbone.
|
35 |
+
|
36 |
+
Here are the results on the remaining 20% of the training set from the Legal Text Retrieval Zalo 2021 challenge:
|
37 |
+
|
38 |
+
| Pretrained Model | Training Datasets | Acc@1 | Acc@10 | Acc@100 | Pre@10 | MRR@10 |
|
39 |
+
|-------------------------------|---------------------------------------|:------------:|:-------------:|:--------------:|:-------------:|:-------------:|
|
40 |
+
| [Vietnamese-SBERT](https://huggingface.co/keepitreal/vietnamese-sbert) | - | 32.34 | 52.97 | 89.84 | 7.05 | 45.30 |
|
41 |
+
| PhoBERT-base-v2 | MSMACRO | 47.81 | 77.19 | 92.34 | 7.72 | 58.37 |
|
42 |
+
| PhoBERT-base-v2 | MSMACRO + SQuADv2.0 + 80% Zalo | 73.28 | 93.59 | 98.85 | 9.36 | 80.73 |
|
43 |
+
|
44 |
+
|
45 |
+
<!--- Describe your model here -->
|
46 |
+
|
47 |
+
## Usage (Sentence-Transformers)
|
48 |
+
|
49 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
50 |
+
|
51 |
+
```
|
52 |
+
pip install -U sentence-transformers
|
53 |
+
```
|
54 |
+
|
55 |
+
Then you can use the model like this:
|
56 |
+
|
57 |
+
```python
|
58 |
+
from sentence_transformers import SentenceTransformer
|
59 |
+
|
60 |
+
# INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
|
61 |
+
sentences = ["Cô ấy là một người vui_tính .", "Cô ấy cười nói suốt cả ngày ."]
|
62 |
+
|
63 |
+
model = SentenceTransformer('bkai-foundation-models/vietnamese-bi-encoder')
|
64 |
+
embeddings = model.encode(sentences)
|
65 |
+
print(embeddings)
|
66 |
+
```
|
67 |
+
|
68 |
+
|
69 |
+
## Usage (Widget HuggingFace)
|
70 |
+
The widget use custom pipeline on top of the default pipeline by adding additional word segmenter before PhobertTokenizer. So you do not need to segment words before using the API:
|
71 |
+
|
72 |
+
An example could be seen in Hosted inference API.
|
73 |
+
|
74 |
+
|
75 |
+
## Usage (HuggingFace Transformers)
|
76 |
+
|
77 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
78 |
+
|
79 |
+
```python
|
80 |
+
from transformers import AutoTokenizer, AutoModel
|
81 |
+
import torch
|
82 |
+
|
83 |
+
|
84 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
85 |
+
def mean_pooling(model_output, attention_mask):
|
86 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
87 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
88 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
89 |
+
|
90 |
+
|
91 |
+
# Sentences we want sentence embeddings, we could use pyvi, underthesea, RDRSegment to segment words
|
92 |
+
sentences = ['Cô ấy là một người vui_tính .', 'Cô ấy cười nói suốt cả ngày .']
|
93 |
+
|
94 |
+
# Load model from HuggingFace Hub
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained('bkai-foundation-models/vietnamese-bi-encoder')
|
96 |
+
model = AutoModel.from_pretrained('bkai-foundation-models/vietnamese-bi-encoder')
|
97 |
+
|
98 |
+
# Tokenize sentences
|
99 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
100 |
+
|
101 |
+
# Compute token embeddings
|
102 |
+
with torch.no_grad():
|
103 |
+
model_output = model(**encoded_input)
|
104 |
+
|
105 |
+
# Perform pooling. In this case, mean pooling.
|
106 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
107 |
+
|
108 |
+
print("Sentence embeddings:")
|
109 |
+
print(sentence_embeddings)
|
110 |
+
```
|
111 |
+
|
112 |
+
## Training
|
113 |
+
|
114 |
+
The model was trained with the parameters:
|
115 |
+
|
116 |
+
**DataLoader**:
|
117 |
+
|
118 |
+
`torch.utils.data.dataloader.DataLoader` of length 17584 with parameters:
|
119 |
+
|
120 |
+
```
|
121 |
+
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
122 |
+
```
|
123 |
+
|
124 |
+
**Loss**:
|
125 |
+
|
126 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
127 |
+
|
128 |
+
```
|
129 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
130 |
+
```
|
131 |
+
|
132 |
+
Parameters of the fit()-Method:
|
133 |
+
|
134 |
+
```
|
135 |
+
{
|
136 |
+
"epochs": 15,
|
137 |
+
"evaluation_steps": 0,
|
138 |
+
"evaluator": "NoneType",
|
139 |
+
"max_grad_norm": 1,
|
140 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
141 |
+
"optimizer_params": {
|
142 |
+
"lr": 2e-05
|
143 |
+
},
|
144 |
+
"scheduler": "WarmupLinear",
|
145 |
+
"steps_per_epoch": null,
|
146 |
+
"warmup_steps": 1000,
|
147 |
+
"weight_decay": 0.01
|
148 |
+
}
|
149 |
+
```
|
150 |
+
|
151 |
+
## Full Model Architecture
|
152 |
+
|
153 |
+
```
|
154 |
+
SentenceTransformer(
|
155 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
|
156 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
157 |
+
)
|
158 |
+
```
|
159 |
+
|
160 |
+
### Please cite our manuscript if this dataset is used for your work
|
161 |
+
```
|
162 |
+
@article{duc2024towards,
|
163 |
+
title={Towards Comprehensive Vietnamese Retrieval-Augmented Generation and Large Language Models},
|
164 |
+
author={Nguyen Quang Duc, Le Hai Son, Nguyen Duc Nhan, Nguyen Dich Nhat Minh, Le Thanh Huong, Dinh Viet Sang},
|
165 |
+
journal={arXiv preprint arXiv:2403.01616},
|
166 |
+
year={2024}
|
167 |
+
}
|
168 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<mask>": 64000
|
3 |
+
}
|
bpe.codes
ADDED
The diff for this file is too large to render.
See raw diff
|
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "output/train_bi-encoder-mnrl-vinai-phobert-base-v2-margin_3.0-2023-08-27_23-13-25/",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 258,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"tokenizer_class": "PhobertTokenizer",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.38.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 64001
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.32.0",
|
5 |
+
"pytorch": "2.0.0+cu117"
|
6 |
+
}
|
7 |
+
}
|
custom_tokenizer.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PhobertTokenizer
|
2 |
+
from pyvi import ViTokenizer
|
3 |
+
|
4 |
+
|
5 |
+
class CustomPhobertTokenizer(PhobertTokenizer):
|
6 |
+
def rdr_segment(self, text):
|
7 |
+
return ViTokenizer.tokenize(text)
|
8 |
+
|
9 |
+
def _tokenize(self, text):
|
10 |
+
segmented_text = self.rdr_segment(text)
|
11 |
+
return super()._tokenize(segmented_text)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e681accadaec87e79901db0c3f68e33d996cba334633b6dd0b2483dba4f398e0
|
3 |
+
size 540015464
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pipeline.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Union
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModel
|
4 |
+
from custom_tokenizer import CustomPhobertTokenizer
|
5 |
+
|
6 |
+
|
7 |
+
def mean_pooling(model_output, attention_mask):
|
8 |
+
token_embeddings = model_output[
|
9 |
+
0
|
10 |
+
] # First element of model_output contains all token embeddings
|
11 |
+
input_mask_expanded = (
|
12 |
+
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
13 |
+
)
|
14 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
|
15 |
+
input_mask_expanded.sum(1), min=1e-9
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
class PreTrainedPipeline:
|
20 |
+
def __init__(self, path="."):
|
21 |
+
self.model = AutoModel.from_pretrained(path)
|
22 |
+
self.tokenizer = CustomPhobertTokenizer.from_pretrained(path)
|
23 |
+
|
24 |
+
def __call__(self, inputs: Dict[str, Union[str, List[str]]]) -> List[float]:
|
25 |
+
"""
|
26 |
+
Args:
|
27 |
+
inputs (Dict[str, Union[str, List[str]]]):
|
28 |
+
a dictionary containing a query sentence and a list of key sentences
|
29 |
+
"""
|
30 |
+
|
31 |
+
# Combine the query sentence and key sentences into one list
|
32 |
+
sentences = [inputs["source_sentence"]] + inputs["sentences"]
|
33 |
+
|
34 |
+
# Tokenize sentences
|
35 |
+
encoded_input = self.tokenizer(
|
36 |
+
sentences, padding=True, truncation=True, return_tensors="pt"
|
37 |
+
)
|
38 |
+
|
39 |
+
# Compute token embeddings
|
40 |
+
with torch.no_grad():
|
41 |
+
model_output = self.model(**encoded_input)
|
42 |
+
|
43 |
+
# Perform pooling to get sentence embeddings
|
44 |
+
sentence_embeddings = mean_pooling(
|
45 |
+
model_output, encoded_input["attention_mask"]
|
46 |
+
)
|
47 |
+
|
48 |
+
# Separate the query embedding from the key embeddings
|
49 |
+
query_embedding = sentence_embeddings[0]
|
50 |
+
key_embeddings = sentence_embeddings[1:]
|
51 |
+
|
52 |
+
# Compute cosine similarities (or any other comparison method you prefer)
|
53 |
+
cosine_similarities = torch.nn.functional.cosine_similarity(
|
54 |
+
query_embedding.unsqueeze(0), key_embeddings
|
55 |
+
)
|
56 |
+
|
57 |
+
# Convert the tensor of cosine similarities to a list of floats
|
58 |
+
scores = cosine_similarities.tolist()
|
59 |
+
|
60 |
+
return scores
|
61 |
+
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
inputs = {
|
65 |
+
"source_sentence": "Anh ấy đang là sinh viên năm cuối",
|
66 |
+
"sentences": [
|
67 |
+
"Anh ấy học tại Đại học Bách khoa Hà Nội, chuyên ngành Khoa học máy tính",
|
68 |
+
"Anh ấy đang làm việc tại nhà máy sản xuất linh kiện điện tử",
|
69 |
+
"Anh ấy chuẩn bị đi du học nước ngoài",
|
70 |
+
"Anh ấy sắp mở cửa hàng bán mỹ phẩm",
|
71 |
+
"Nhà anh ấy có rất nhiều cây cảnh",
|
72 |
+
],
|
73 |
+
}
|
74 |
+
|
75 |
+
pipeline = PreTrainedPipeline()
|
76 |
+
res = pipeline(inputs)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d8135cb6ff79bf4303fb0afd11808791c9123ae8ee753fccd480207e347963e
|
3 |
+
size 540057065
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pyvi>=0.1.1
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": "<mask>",
|
6 |
+
"pad_token": "<pad>",
|
7 |
+
"sep_token": "</s>",
|
8 |
+
"unk_token": "<unk>"
|
9 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"64000": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 1000000000000000019884624838656,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "PhobertTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|