File size: 1,657 Bytes
a579886 6cd21d6 6bb3dfc 6cd21d6 a579886 6cd21d6 3b6ffff a579886 d6b7d99 a579886 892d56e d6b7d99 cc87daf 892d56e d6b7d99 892d56e d6b7d99 cc87daf 892d56e a7732cb d6b7d99 cc87daf 892d56e d6b7d99 cc87daf 892d56e d6b7d99 cc87daf 892d56e d6b7d99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
widget:
- text: "काठमाडौंको बहिराव बसपार्कमा एक भयानक दुर्घटना घटेको थियो। रातको समय थियो र भारी वर्षा जम्मा भएको थियो।"
base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit
pipeline_tag: text2text-generation
datasets:
- sanjeev-bhandari01/nepali-summarization-dataset
---
# Uploaded model
- **Developed by:** Dragneel
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit
# Use The Model
from transformers import AutoTokenizer, AutoModelForCausalLM
Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Dragneel/Phi-3-mini-Nepali-Text-Summarization-f16")
model = AutoModelForCausalLM.from_pretrained("Dragneel/Phi-3-mini-Nepali-Text-Summarization-f16")
Example input text
input_text = "Summarize Nepali Text in Nepali: काठमाडौंको बहिराव बसपार्कमा एक भयानक दुर्घटना घटेको थियो। रातको समय थियो र भारी बर्फ जम्मा भएको थियो।"
Tokenize the input text
input_ids = tokenizer.encode(input_text, return_tensors='pt')
Generate text with adjusted parameters
outputs = model.generate(input_ids, max_new_tokens=50)
Decode the generated tokens
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)
|