File size: 1,657 Bytes
a579886
 
 
 
 
 
 
 
 
 
6cd21d6
6bb3dfc
6cd21d6
a579886
6cd21d6
3b6ffff
 
a579886
 
 
 
 
 
 
 
d6b7d99
a579886
892d56e
d6b7d99
cc87daf
892d56e
d6b7d99
892d56e
d6b7d99
 
cc87daf
892d56e
a7732cb
d6b7d99
cc87daf
892d56e
d6b7d99
 
cc87daf
892d56e
d6b7d99
 
cc87daf
892d56e
d6b7d99
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
widget:
- text: "काठमाडौंको बहिराव बसपार्कमा एक भयानक दुर्घटना घटेको थियो। रातको समय थियो र भारी वर्षा जम्मा भएको थियो।"

base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit
pipeline_tag: text2text-generation
datasets:
- sanjeev-bhandari01/nepali-summarization-dataset
---

# Uploaded  model

- **Developed by:** Dragneel
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit

# Use The Model

from transformers import AutoTokenizer, AutoModelForCausalLM

Load the tokenizer and model

tokenizer = AutoTokenizer.from_pretrained("Dragneel/Phi-3-mini-Nepali-Text-Summarization-f16")

model = AutoModelForCausalLM.from_pretrained("Dragneel/Phi-3-mini-Nepali-Text-Summarization-f16")

Example input text

input_text = "Summarize Nepali Text in Nepali: काठमाडौंको बहिराव बसपार्कमा एक भयानक दुर्घटना घटेको थियो। रातको समय थियो र भारी बर्फ जम्मा भएको थियो।"

Tokenize the input text

input_ids = tokenizer.encode(input_text, return_tensors='pt')

Generate text with adjusted parameters

outputs = model.generate(input_ids, max_new_tokens=50)

Decode the generated tokens

generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(generated_text)