--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl widget: - text: "काठमाडौंको बहिराव बसपार्कमा एक भयानक दुर्घटना घटेको थियो। रातको समय थियो र भारी वर्षा जम्मा भएको थियो।" base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit pipeline_tag: text2text-generation datasets: - sanjeev-bhandari01/nepali-summarization-dataset --- # Uploaded model - **Developed by:** Dragneel - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit # Use The Model from transformers import AutoTokenizer, AutoModelForCausalLM Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("Dragneel/Phi-3-mini-Nepali-Text-Summarization-f16") model = AutoModelForCausalLM.from_pretrained("Dragneel/Phi-3-mini-Nepali-Text-Summarization-f16") Example input text input_text = "Summarize Nepali Text in Nepali: काठमाडौंको बहिराव बसपार्कमा एक भयानक दुर्घटना घटेको थियो। रातको समय थियो र भारी बर्फ जम्मा भएको थियो।" Tokenize the input text input_ids = tokenizer.encode(input_text, return_tensors='pt') Generate text with adjusted parameters outputs = model.generate(input_ids, max_new_tokens=50) Decode the generated tokens generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text)