--- tags: - merge - mergekit - lazymergekit - microsoft/Phi-3-mini-128k-instruct - gradientai/Llama-3-8B-Instruct-Gradient-1048k - ise-uiuc/Magicoder-DS-6.7B base_model: - microsoft/Phi-3-mini-128k-instruct - gradientai/Llama-3-8B-Instruct-Gradient-1048k - ise-uiuc/Magicoder-DS-6.7B --- # HodgePodge HodgePodge is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) * [gradientai/Llama-3-8B-Instruct-Gradient-1048k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k) * [ise-uiuc/Magicoder-DS-6.7B](https://huggingface.co/ise-uiuc/Magicoder-DS-6.7B) ## 🧩 Configuration ```yaml slices: - sources: - model: microsoft/Phi-3-mini-128k-instruct layer_range: [0, 32] - model: gradientai/Llama-3-8B-Instruct-Gradient-1048k layer_range: [0, 32] - model: ise-uiuc/Magicoder-DS-6.7B layer_range: [0, 32] merge_method: modelstock base_model: microsoft/Phi-3-mini-128k-instruct parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "fuzzymonstereatinganapple/HodgePodge" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```