--- license: apache-2.0 tags: - moe - merge - deepseek-ai/deepseek-coder-6.7b-instruct - ise-uiuc/Magicoder-S-CL-7B - WizardLM/WizardMath-7B-V1.0 - WizardLM/WizardCoder-Python-7B-V1.0 --- # Magician-MoE-4x7B Magician-MoE-4x7B is a Mixure of Experts (MoE) made with the following models: * [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) * [ise-uiuc/Magicoder-S-CL-7B](https://huggingface.co/ise-uiuc/Magicoder-S-CL-7B) * [WizardLM/WizardMath-7B-V1.0](https://huggingface.co/WizardLM/WizardMath-7B-V1.0) * [WizardLM/WizardCoder-Python-7B-V1.0](https://huggingface.co/WizardLM/WizardCoder-Python-7B-V1.0) ## 🧩 Configuration ```yaml base_model: ise-uiuc/Magicoder-S-CL-7B gate_mode: cheap_embed experts: - source_model: deepseek-ai/deepseek-coder-6.7b-instruct positive_prompts: ["You are an AI coder","coding","Java expert"] - source_model: ise-uiuc/Magicoder-S-CL-7B positive_prompts: ["You are an AI programmer","programming","C++ expert"] - source_model: WizardLM/WizardMath-7B-V1.0 positive_prompts: ["Math problem solving","Think step by step","Math expert"] - source_model: WizardLM/WizardCoder-Python-7B-V1.0 positive_prompts: ["Great at Deep learning","Algorithm and Data Structure","Python expert"] ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "FelixChao/Magician-MoE-4x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```