--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9253070709306186 - name: Recall type: recall value: 0.9354513927732409 - name: F1 type: f1 value: 0.9303515798842902 - name: Accuracy type: accuracy value: 0.9834305050280394 --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0619 - Precision: 0.9253 - Recall: 0.9355 - F1: 0.9304 - Accuracy: 0.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 439 | 0.0877 | 0.8779 | 0.8955 | 0.8866 | 0.9754 | | 0.2182 | 2.0 | 878 | 0.0626 | 0.9193 | 0.9299 | 0.9245 | 0.9820 | | 0.0557 | 3.0 | 1317 | 0.0612 | 0.9252 | 0.9323 | 0.9287 | 0.9829 | | 0.0346 | 4.0 | 1756 | 0.0619 | 0.9253 | 0.9355 | 0.9304 | 0.9834 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2