--- license: apache-2.0 tags: - generated_from_trainer datasets: - multi_news metrics: - rouge model-index: - name: finetuned_multi_news_bart_text_summarisation results: - task: name: Sequence-to-sequence Language Modeling type: textsummarization dataset: name: multi_news type: multi_news config: default split: test args: default metrics: - name: Rouge1 type: rouge value: 0.4038 pipeline_tag: summarization --- # finetuned_multi_news_bart_text_summarisation This model is a fine-tuned version of [slauw87/bart_summarisation](https://huggingface.co/slauw87/bart_summarisation) on the multi_news dataset. It achieves the following results on the evaluation set: - Loss: 2.8952 - Rouge1: 0.4038 - Rouge2: 0.1389 - Rougel: 0.2155 - Rougelsum: 0.2147 - Gen Len: 138.7667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| | No log | 1.0 | 15 | 2.9651 | 0.3903 | 0.134 | 0.21 | 0.2098 | 137.6 | | No log | 2.0 | 30 | 2.8952 | 0.4038 | 0.1389 | 0.2155 | 0.2147 | 138.7667 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3