|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" LG AI Research EXAONE Lab""" |
|
import sys |
|
import os |
|
from typing import List, Optional, Tuple, Union |
|
from packaging import version |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
import torch.nn.functional as F |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache |
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
|
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
QuestionAnsweringModelOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
logging, |
|
) |
|
from .configuration_exaone import ExaoneConfig |
|
from torch.nn.utils import skip_init |
|
import math |
|
import numpy as np |
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
try: |
|
import inspect |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
|
|
import flash_attn |
|
if version.parse(flash_attn.__version__) > version.parse('2.4.2'): |
|
from flash_attn.ops.triton.layer_norm import rms_norm_fn |
|
else: |
|
from flash_attn.ops.triton.layernorm import rms_norm_fn |
|
except: |
|
pass |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "exaone" |
|
_CONFIG_FOR_DOC = "ExaoneConfig" |
|
|
|
EXAONE_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"exaone", |
|
] |
|
|
|
|
|
@torch.jit.script |
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
def rotate_half(x): |
|
""" Rotates half the hidden dims of the input. """ |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
min_dtype: float, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
device (`torch.device`): |
|
The device to plcae the 4D attention mask on. |
|
min_dtype (`float`): |
|
The minimum value representable with the dtype `dtype`. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
return causal_mask |
|
|
|
|
|
class ExaoneRMSNorm(torch.nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = torch.nn.Parameter(torch.ones(hidden_size)) |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.eps) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
class ExaoneTritonRMSNorm(torch.nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int = 0, |
|
eps: float = 1e-5, |
|
): |
|
super().__init__() |
|
self.eps = eps |
|
self.drop = None |
|
self.weight = torch.nn.Parameter(torch.empty(hidden_size)) |
|
self.register_parameter("bias", None) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
torch.nn.init.ones_(self.weight) |
|
|
|
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False): |
|
return rms_norm_fn( |
|
x, |
|
self.weight, |
|
self.bias, |
|
residual=residual, |
|
eps=self.eps, |
|
dropout_p=self.drop.p if self.drop is not None and self.training else 0.0, |
|
prenorm=prenorm, |
|
residual_in_fp32=residual_in_fp32, |
|
) |
|
|
|
|
|
ALL_LAYERNORM_LAYERS.append(ExaoneRMSNorm) |
|
ALL_LAYERNORM_LAYERS.append(ExaoneTritonRMSNorm) |
|
|
|
|
|
class ExaoneRotaryEmbedding(nn.Module): |
|
""" |
|
Common description for the functions named `_compute_XXX_rope_parameters()` |
|
- Copied from `transformers.modeling_rope_utils` in v4.43, with some modifications. |
|
|
|
Computes the inverse frequencies with linear scaling. |
|
The EXAONE model supports 'default', 'linear', 'dynamic', and 'yarn'. |
|
|
|
Args: |
|
config (:obj:`~transformers.PretrainedConfig`): |
|
The model configuration. |
|
device (:obj:`torch.device`): |
|
The device to use for initialization of the inverse frequencies. |
|
seq_len (:obj:`int`, `optional`): |
|
The current sequence length. Unused for this type of RoPE. |
|
Returns: |
|
Tuple of (:obj:`torch.Tensor`, :obj:`float`), containing the inverse frequencies for the RoPE embeddings and the |
|
post-processing scaling factor applied to the computed cos/sin (unused in some types of RoPE). |
|
""" |
|
|
|
def _compute_default_rope_parameters( |
|
self, |
|
config: Optional[PretrainedConfig], |
|
device: Optional["torch.device"] = None, |
|
seq_len: Optional[int] = None, |
|
) -> Tuple["torch.Tensor", float]: |
|
base = config.rope_theta |
|
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 |
|
dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor) |
|
|
|
attention_factor = 1.0 |
|
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim)) |
|
return inv_freq, attention_factor |
|
|
|
def _compute_linear_scaling_rope_parameters( |
|
self, |
|
config: Optional[PretrainedConfig], |
|
device: Optional["torch.device"] = None, |
|
seq_len: Optional[int] = None, |
|
) -> Tuple["torch.Tensor", float]: |
|
factor = config.rope_scaling["factor"] |
|
if factor < 1.0: |
|
logger.warning_once(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") |
|
|
|
inv_freq, attention_factor = self._compute_default_rope_parameters(config, device, seq_len) |
|
inv_freq /= factor |
|
return inv_freq, attention_factor |
|
|
|
def _compute_dynamic_ntk_parameters( |
|
self, |
|
config: Optional[PretrainedConfig], |
|
device: Optional["torch.device"] = None, |
|
seq_len: Optional[int] = None, |
|
) -> Tuple["torch.Tensor", float]: |
|
base = config.rope_theta |
|
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 |
|
dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor) |
|
max_position_embeddings = config.max_position_embeddings |
|
factor = config.rope_scaling["factor"] |
|
if factor < 1.0: |
|
logger.warning_once(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") |
|
|
|
attention_factor = 1.0 |
|
seq_len = seq_len if seq_len is not None else max_position_embeddings |
|
|
|
base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim)) |
|
return inv_freq, attention_factor |
|
|
|
def _compute_yarn_parameters( |
|
self, |
|
config: PretrainedConfig, |
|
device: "torch.device", |
|
seq_len: Optional[int] = None, |
|
) -> Tuple["torch.Tensor", float]: |
|
base = config.rope_theta |
|
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 |
|
dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor) |
|
max_position_embeddings = config.max_position_embeddings |
|
factor = config.rope_scaling["factor"] |
|
if factor < 1.0: |
|
logger.warning_once(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") |
|
|
|
|
|
attention_factor = config.rope_scaling.get("attention_factor") |
|
if attention_factor is None: |
|
attention_factor = 0.1 * math.log(factor) + 1.0 |
|
if attention_factor < 0: |
|
logger.warning_once( |
|
f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}" |
|
) |
|
|
|
|
|
|
|
beta_fast = config.rope_scaling.get("beta_fast") or 32 |
|
beta_slow = config.rope_scaling.get("beta_slow") or 1 |
|
if not isinstance(beta_fast, float): |
|
logger.warning_once(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}") |
|
if not isinstance(beta_slow, float): |
|
logger.warning_once(f"`rope_scaling`'s beta_slow field must be a float, got {beta_fast}") |
|
if beta_fast < beta_slow: |
|
logger.warning_once( |
|
f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} " |
|
f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)" |
|
) |
|
|
|
|
|
def find_correction_dim(num_rotations, dim, base, max_position_embeddings): |
|
"""Inverse dimension formula to find the dimension based on the number of rotations""" |
|
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base)) |
|
|
|
def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings): |
|
"""Find dimension range bounds based on rotations""" |
|
low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings)) |
|
high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings)) |
|
return max(low, 0), min(high, dim - 1) |
|
|
|
def linear_ramp_mask(min, max, dim): |
|
if min == max: |
|
max += 0.001 |
|
|
|
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) |
|
ramp_func = torch.clamp(linear_func, 0, 1) |
|
return ramp_func |
|
|
|
pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim) |
|
inv_freq_extrapolation = 1.0 / pos_freqs |
|
inv_freq_interpolation = 1.0 / (factor * pos_freqs) |
|
|
|
low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings) |
|
|
|
|
|
inv_freq_mask = 1 - linear_ramp_mask(low, high, dim // 2).float().to(device) |
|
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask |
|
|
|
return inv_freq, attention_factor |
|
|
|
def __init__(self, config: ExaoneConfig, device=None): |
|
ROPE_INIT_FUNCTIONS = { |
|
"default": self._compute_default_rope_parameters, |
|
"linear": self._compute_linear_scaling_rope_parameters, |
|
"dynamic": self._compute_dynamic_ntk_parameters, |
|
"yarn": self._compute_yarn_parameters, |
|
} |
|
|
|
super().__init__() |
|
if config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
if self.rope_type not in ROPE_INIT_FUNCTIONS: |
|
raise KeyError(f"The EXAONE model does not support RoPE type: {self.rope_type}") |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
def _update_freq(self, position_ids, device): |
|
""" |
|
dynamic RoPE layers should recompute `inv_freq` in the following situations: |
|
1 - growing beyond the cached sequence length (allow scaling) |
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences) |
|
""" |
|
seq_len = torch.max(position_ids) + 1 |
|
if seq_len > self.max_seq_len: |
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.max_seq_len = seq_len |
|
|
|
if seq_len < self.original_max_seq_len and self.max_seq_len > self.original_max_seq_len: |
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) |
|
self.max_seq_len = self.original_max_seq_len |
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids): |
|
if "dynamic" in self.rope_type: |
|
self._update_freq(position_ids, device=x.device) |
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
device_type = x.device.type |
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded @ position_ids_expanded).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos, sin = emb.cos(), emb.sin() |
|
|
|
cos, sin = cos * self.attention_scaling, sin * self.attention_scaling |
|
return cos.to(x.dtype), sin.to(x.dtype) |
|
|
|
|
|
class ExaoneSelfAttention(nn.Module): |
|
def __init__(self, config: ExaoneConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.attention_dropout_rate = config.attention_dropout |
|
|
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
self.rotary = ExaoneRotaryEmbedding(config) |
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False) |
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
if position_embeddings is None: |
|
cos, sin = self.rotary(value_states, position_ids=position_ids) |
|
else: |
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, :key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout_rate, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"Attention outputs should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous() |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class ExaoneFlashAttention(ExaoneSelfAttention): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if isinstance(past_key_value, StaticCache): |
|
raise ValueError( |
|
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " |
|
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" |
|
) |
|
|
|
output_attentions = False |
|
|
|
bsz, q_len, h_size = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
if position_embeddings is None: |
|
cos, sin = self.rotary(value_states, position_ids=position_ids) |
|
else: |
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
|
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
dropout_rate = self.attention_dropout_rate if self.training else 0.0 |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, is_causal=True |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous() |
|
attn_output = self.out_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
@staticmethod |
|
def _flash_attention_forward( |
|
query_states: torch.Tensor, |
|
key_states: torch.Tensor, |
|
value_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
query_length: int, |
|
is_causal: bool, |
|
dropout: float = 0.0, |
|
softmax_scale: Optional[float] = None, |
|
sliding_window: Optional[int] = None, |
|
use_top_left_mask: bool = False, |
|
softcap: Optional[float] = None, |
|
deterministic: bool = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1", |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`float`): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
use_top_left_mask (`bool`, defaults to `False`): |
|
flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. |
|
softcap (`float`, *optional*): |
|
Softcap for the attention logits, used e.g. in gemma2. |
|
deterministic (`bool`, *optional*): |
|
Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled. |
|
""" |
|
if not use_top_left_mask: |
|
causal = is_causal |
|
else: |
|
|
|
causal = is_causal and query_length != 1 |
|
|
|
|
|
use_sliding_windows = ( |
|
_flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window |
|
) |
|
flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {} |
|
|
|
if softcap is not None: |
|
flash_kwargs["softcap"] = softcap |
|
|
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = ExaoneFlashAttention._upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
**flash_kwargs, |
|
) |
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs |
|
) |
|
|
|
return attn_output |
|
|
|
@staticmethod |
|
def _upad_input( |
|
query_layer: torch.Tensor, |
|
key_layer: torch.Tensor, |
|
value_layer: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
query_length: int, |
|
): |
|
""" |
|
Unpads query, key, and values tensors, using a single dimension for all tokens even though they belong to different batches. |
|
|
|
This function is used instead of `flash_attn.bert_padding.unpad_input` in order to avoid the recomputation of the same intermediary |
|
tensors for query, key, value tensors. |
|
|
|
Arguments: |
|
query_layer (`torch.Tensor`): |
|
Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim). |
|
key_layer (`torch.Tensor`): |
|
Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). |
|
value_layer (`torch.Tensor`): |
|
Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). |
|
attention_mask (`torch.Tensor`): |
|
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. |
|
query_length (`int`): |
|
Target length. |
|
|
|
Return: |
|
query_layer (`torch.Tensor): |
|
Query state without padding. Shape: (total_target_length, num_heads, head_dim). |
|
key_layer (`torch.Tensor`): |
|
Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). |
|
value_layer (`torch.Tensor`): |
|
Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). |
|
indices_q (`torch.Tensor`): |
|
The indices of non-masked tokens from the flattened input target sequence. |
|
(cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`): |
|
The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`): |
|
Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value). |
|
""" |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = ExaoneFlashAttention._get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), indices_k) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
@staticmethod |
|
def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]: |
|
""" |
|
Retrieves indexing data required to repad unpadded (ragged) tensors. |
|
|
|
Arguments: |
|
attention_mask (`torch.Tensor`): |
|
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. |
|
|
|
Return: |
|
indices (`torch.Tensor): |
|
The indices of non-masked tokens from the flattened input sequence. |
|
cu_seqlens (`torch.Tensor`): |
|
The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). |
|
max_seqlen_in_batch (`int`): |
|
Maximum sequence length in batch. |
|
""" |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
class ExaoneSdpaAttention(ExaoneSelfAttention): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
if output_attentions: |
|
logger.warning_once( |
|
"ExaoneModel is using ExaoneSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**kwargs, |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
if position_embeddings is None: |
|
cos, sin = self.rotary(value_states, position_ids=position_ids) |
|
else: |
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = causal_mask[:, :, :, :key_states.shape[-2]] |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and causal_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
|
|
|
|
is_causal = True if causal_mask is None and q_len > 1 else False |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=causal_mask, |
|
dropout_p=self.attention_dropout_rate if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous() |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
class ExaoneAttention(nn.Module): |
|
def __init__(self, config, layer_id=0): |
|
super().__init__() |
|
self.layer_id = layer_id |
|
if 'flash' in config._attn_implementation: |
|
self.attention = ExaoneFlashAttention(config, self.layer_id) |
|
elif 'sdpa' in config._attn_implementation: |
|
self.attention = ExaoneSdpaAttention(config, self.layer_id) |
|
else: |
|
self.attention = ExaoneSelfAttention(config, self.layer_id) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
return self.attention( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
class ExaoneGatedMLP(nn.Module): |
|
def __init__(self, intermediate_size, config): |
|
super().__init__() |
|
self.config = config |
|
embed_dim = config.hidden_size |
|
self.c_fc_0 = nn.Linear(embed_dim, intermediate_size, bias=False) |
|
self.c_fc_1 = nn.Linear(embed_dim, intermediate_size, bias=False) |
|
self.c_proj = nn.Linear(intermediate_size, embed_dim, bias=False) |
|
self.act = ACT2FN[config.activation_function] |
|
|
|
def forward(self, hidden_states): |
|
output_proj = self.c_proj(self.act(self.c_fc_0(hidden_states)) * self.c_fc_1(hidden_states)) |
|
return output_proj |
|
|
|
|
|
class ExaoneBlock(nn.Module): |
|
def __init__(self, config, layer_id): |
|
super().__init__() |
|
self.config = config |
|
hidden_size = config.hidden_size |
|
inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size |
|
self.ln_1 = ExaoneRMSNorm(hidden_size = hidden_size, eps=config.layer_norm_epsilon) |
|
self.attn = ExaoneAttention(config, layer_id) |
|
self.ln_2 = ExaoneRMSNorm(hidden_size = hidden_size, eps=config.layer_norm_epsilon) |
|
self.mlp = ExaoneGatedMLP(inner_dim, config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
|
residual = hidden_states |
|
hidden_states = self.ln_1(hidden_states) |
|
|
|
hidden_states, self_attn_weights, present_key_value = self.attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = residual + hidden_states |
|
|
|
residual = hidden_states |
|
hidden_states = self.ln_2(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
|
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class ExaonePreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = ExaoneConfig |
|
base_model_prefix = "transformer" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["ExaoneBlock"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, (nn.Linear,)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, ExaoneRMSNorm): |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
EXAONE_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config (:class:`~transformers.ExaoneConfig`): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. |
|
""" |
|
|
|
EXAONE_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`): |
|
:obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else |
|
``past_key_values.get_seq_length()`` (``sequence_length`` of input past key value states). Indices of input |
|
sequence tokens in the vocabulary. |
|
|
|
If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be |
|
passed as ``input_ids``. |
|
|
|
`What are input IDs? <../glossary.html#input-ids>`__ |
|
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__ |
|
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, |
|
config.max_position_embeddings - 1]``. |
|
|
|
`What are position IDs? <../glossary.html#position-ids>`_ |
|
past_key_values (:obj:`Cache`, `optional`): |
|
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see |
|
:obj:`past_key_values` output below). Can be used to speed up sequential decoding. This typically consists |
|
in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or |
|
`config.use_cache=True`. |
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): |
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated |
|
vectors than the model's internal embedding lookup matrix. |
|
|
|
If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see |
|
:obj:`past_key_values`). |
|
use_cache (:obj:`bool`, `optional`): |
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up |
|
decoding (see :obj:`past_key_values`). |
|
output_attentions (:obj:`bool`, `optional`): |
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned |
|
tensors for more detail. |
|
output_hidden_states (:obj:`bool`, `optional`): |
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for |
|
more detail. |
|
return_dict (:obj:`bool`, `optional`): |
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. |
|
cache_position (:obj:`torch.LongTensor` of shape :obj:`(sequence_length)`, `optional`): |
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
the complete sequence length. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare EXAONE Model transformer outputting raw hidden-states without any specific head on top.", |
|
EXAONE_START_DOCSTRING, |
|
) |
|
class ExaoneModel(ExaonePreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.wte = nn.Embedding(config.vocab_size, self.embed_dim, self.config.pad_token_id) |
|
self.drop = nn.Dropout(float(config.embed_dropout)) |
|
self.h = nn.ModuleList([ExaoneBlock(config, layer_id=i) for i in range(config.num_layers)]) |
|
self.ln_f = ExaoneRMSNorm(hidden_size=self.embed_dim, eps=config.layer_norm_epsilon) |
|
self.rotary = ExaoneRotaryEmbedding(config) |
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.wte |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.wte = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPastAndCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape[:2] |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
return_legacy_cache = False |
|
if ( |
|
use_cache and not isinstance(past_key_values, Cache) and not self.training |
|
): |
|
return_legacy_cache = True |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
logger.warning_once( |
|
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " |
|
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)" |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
hidden_states = self.drop(hidden_states) |
|
|
|
position_embeddings = self.rotary(hidden_states, position_ids) |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for block in self.h: |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
outputs = self._gradient_checkpointing_func( |
|
block.__call__, |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
position_embeddings, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache: |
|
next_decoder_cache = outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (outputs[1],) |
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache() if return_legacy_cache else next_decoder_cache |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool, |
|
): |
|
|
|
|
|
|
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
|
|
|
|
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
if using_static_cache: |
|
target_length = past_key_values.get_max_length() |
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
|
|
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=target_length, |
|
dtype=dtype, |
|
device=device, |
|
min_dtype=min_dtype, |
|
cache_position=cache_position, |
|
batch_size=input_tensor.shape[0], |
|
) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type == "cuda" |
|
and not output_attentions |
|
): |
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The EXAONE Model transformer with a language modeling head on top (linear layer with weights tied to the input |
|
embeddings). |
|
""", |
|
EXAONE_START_DOCSTRING, |
|
) |
|
class ExaoneForCausalLM(ExaonePreTrainedModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = ExaoneModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.config = config |
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
>>> model = AutoModelForCausalLM.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", |
|
trust_remote_code=True) |
|
>>> tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct") |
|
|
|
>>> prompt = "Explain how wonderful you are" |
|
>>> messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
>>> input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=True, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
) |
|
|
|
>>> output = model.generate(input_ids, max_new_tokens=128) |
|
>>> tokenizer.decode(output[0], skip_special_tokens=True) |
|
"[|system|]You are a helpful assistant.\n[|user|]Explain how wonderful you are\n[|assistant|]Thank you for your kind words! I'm here to assist you with information, answer questions, and help you in any way I can. My goal is to provide accurate, helpful, and timely responses. Whether you need help with a specific task, want to learn something new, or just need someone to talk to, I'm here for you. How can I assist you today?" |
|
``` |
|
""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
lm_logits = self.lm_head(hidden_states) |
|
lm_logits = lm_logits.float() |
|
loss = None |
|
if labels is not None: |
|
lm_logits = lm_logits.to(torch.float32) |
|
|
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
lm_logits = lm_logits.to(hidden_states.dtype) |
|
loss = loss.to(hidden_states.dtype) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
position_ids=None, |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
|
|
|
|
|
|
if past_key_values is not None: |
|
if inputs_embeds is not None: |
|
input_ids = input_ids[:, -cache_position.shape[0] :] |
|
elif input_ids.shape[1] != cache_position.shape[0]: |
|
input_ids = input_ids[:, cache_position] |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
position_ids = position_ids.clone(memory_format=torch.contiguous_format) |
|
|
|
|
|
if inputs_embeds is not None and cache_position[0] == 0: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: |
|
if inputs_embeds is not None: |
|
batch_size, sequence_length = inputs_embeds.shape |
|
device = inputs_embeds.device |
|
else: |
|
batch_size, sequence_length = input_ids.shape |
|
device = input_ids.device |
|
|
|
dtype = self.lm_head.weight.dtype |
|
min_dtype = torch.finfo(dtype).min |
|
|
|
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=past_key_values.get_max_length(), |
|
dtype=dtype, |
|
device=device, |
|
min_dtype=min_dtype, |
|
cache_position=cache_position, |
|
batch_size=batch_size, |
|
) |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"cache_position": cache_position, |
|
"past_key_values": past_key_values, |
|
"use_cache": use_cache, |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The EXAONE Model transformer with a sequence classification head on top (linear layer). |
|
|
|
:class:`~transformers.ExaoneForSequenceClassification` uses the last token in order to do the classification, as |
|
other causal models (e.g. GPT-1) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
:obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each |
|
row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot |
|
guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take |
|
the last value in each row of the batch). |
|
""", |
|
EXAONE_START_DOCSTRING, |
|
) |
|
class ExaoneForSequenceClassification(ExaonePreTrainedModel): |
|
_keys_to_ignore_on_load_missing = ["lm_head.weight"] |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.transformer = ExaoneModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=SequenceClassifierOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size, sequence_length = input_ids.shape[:2] |
|
else: |
|
batch_size, sequence_length = inputs_embeds.shape[:2] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
|
|
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
logger.warning( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The EXAONE Model transformer with a span classification head on top for extractive question-answering tasks like |
|
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
EXAONE_START_DOCSTRING, |
|
) |
|
class ExaoneForQuestionAnswering(ExaonePreTrainedModel): |
|
_keys_to_ignore_on_load_missing = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.transformer = ExaoneModel(config) |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the |
|
sequence are not taken into account for computing the loss. |
|
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the |
|
sequence are not taken into account for computing the loss. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1).to(start_logits.device) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1).to(end_logits.device) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|