File size: 1,258 Bytes
ab84b16
 
 
 
56e505d
ab84b16
 
 
 
 
057d00e
ab84b16
0964040
 
 
 
 
 
 
 
ef2cb41
0964040
 
 
 
 
 
062bc45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e8e60
 
 
 
 
062bc45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
tags:
- gptq
- 4bit
- int4
- gptqmodel
- modelcloud
- llama-3.1
- 8b
- instruct
license: llama3.1
---
This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).

- **bits**: 4
- **group_size**: 128
- **desc_act**: true
- **static_groups**: false
- **sym**: true
- **lm_head**: false
- **damp_percent**: 0.005
- **true_sequential**: true
- **model_name_or_path**: ""
- **model_file_base_name**: "model"
- **quant_method**: "gptq"
- **checkpoint_format**: "gptq"
- **meta**  - **quantizer**: "gptqmodel:0.9.9-dev0"

**Here is an example:**
```python
from transformers import AutoTokenizer
from gptqmodel import GPTQModel

model_name = "ModelCloud/Meta-Llama-3.1-8B-Instruct-gptq-4bit"

prompt = [{"role": "user", "content": "I am in Shanghai, preparing to visit the natural history museum. Can you tell me the best way to"}]

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = GPTQModel.from_quantized(model_name)

input_tensor = tokenizer.apply_chat_template(prompt, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)

print(result)
```