Text Generation
Transformers
Safetensors
mixtral
Mixture of Experts
frankenmoe
Merge
mergekit
lazymergekit
mlabonne/AlphaMonarch-7B
FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B
SanjiWatsuki/Kunoichi-DPO-v2-7B
OmnicromsBrain/NeuralStar-7b-Lazy
conversational
Eval Results
text-generation-inference
Inference Endpoints
File size: 6,980 Bytes
1d92242 7a7b92f 1d92242 cadde44 1d92242 50764e2 e59d4f7 30f48bb e59d4f7 1a30d8f 1d92242 30f48bb a76b177 30f48bb 67136d1 a76b177 30f48bb 1d92242 38da3a8 7a7b92f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- mlabonne/AlphaMonarch-7B
- FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- OmnicromsBrain/NeuralStar-7b-Lazy
base_model:
- mlabonne/AlphaMonarch-7B
- FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- OmnicromsBrain/NeuralStar-7b-Lazy
model-index:
- name: NeuralStar_AlphaWriter_4x7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.22
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=OmnicromsBrain/NeuralStar_AlphaWriter_4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.31
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=OmnicromsBrain/NeuralStar_AlphaWriter_4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.6
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=OmnicromsBrain/NeuralStar_AlphaWriter_4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.7
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=OmnicromsBrain/NeuralStar_AlphaWriter_4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.0
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=OmnicromsBrain/NeuralStar_AlphaWriter_4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.0
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=OmnicromsBrain/NeuralStar_AlphaWriter_4x7b
name: Open LLM Leaderboard
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65c70c9e21d80a923d664563/ntyev6qExGVY3Ysg2D6-l.png)
# NeuralStar_AlphaWriter_4x7b
I was blown away by the writing results I was getting from mlabonne/Beyonder-4x7B-v3 while writing in [NovelCrafter](https://www.novelcrafter.com).
Inspired by his [LLM Course](https://github.com/mlabonne/llm-course) and fueled by his [LazyMergeKit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb).
I couldnt help but wonder what a writing model would be like if all 4 “experts” excelled in creative writing.
I present NeuralStar-AlphaWriter-4x7b:
NeuralStar_AlphaWriter_4x7b is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
* [FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B](https://huggingface.co/FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B)
* [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B)
* [OmnicromsBrain/NeuralStar-7b-Lazy](https://huggingface.co/OmnicromsBrain/NeuralStar-7b-Lazy)
## ⚡ Quantized Models
Special thanks to MRadermacher for the Static and iMatrx quantized models
**.GGUF** https://huggingface.co/mradermacher/NeuralStar_AlphaWriter_4x7b-GGUF
**iMatrix** https://huggingface.co/mradermacher/NeuralStar_AlphaWriter_4x7b-i1-GGUF
Q4_K_M and Q5_K_M .gguf [**Here**](https://huggingface.co/OmnicromsBrain/NeuralStar_AlphaWriter_4x7b-GGUF) created with [mlabonne/Autogguf](https://colab.research.google.com/drive/1P646NEg33BZy4BfLDNpTz0V0lwIU3CHu)
## 🧩 Configuration
```yaml
base_model: mlabonne/AlphaMonarch-7B
experts:
- source_model: mlabonne/AlphaMonarch-7B
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
- "I want"
- source_model: FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B
positive_prompts:
- "edit"
- "rewrite"
- "evaluate"
- "spelling"
- "grammer"
- source_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
positive_prompts:
- "storywriting"
- "write"
- "scene"
- "prose"
- "character"
- source_model: OmnicromsBrain/NeuralStar-7b-Lazy
positive_prompts:
- "codex"
- "plot"
- "outline"
- "scenebeat"
- "count"
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "OmnicromsBrain/NeuralStar_AlphaWriter_4x7b"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_OmnicromsBrain__NeuralStar_AlphaWriter_4x7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.31|
|AI2 Reasoning Challenge (25-Shot)|70.22|
|HellaSwag (10-Shot) |88.31|
|MMLU (5-Shot) |64.60|
|TruthfulQA (0-shot) |71.70|
|Winogrande (5-shot) |82.00|
|GSM8k (5-shot) |63.00|
|