--- tags: - merge - mergekit - kasper52786/StoryWeaver-7b-Instruct-v0.1 - N8Programs/Coxcomb - Norquinal/Mistral-7B-storywriter base_model: - kasper52786/StoryWeaver-7b-Instruct-v0.1 - N8Programs/Coxcomb - Norquinal/Mistral-7B-storywriter --- # StoryFusion-7B StoryFusion-7B is a merge of the following models: * [kasper52786/StoryWeaver-7b-Instruct-v0.1](https://huggingface.co/kasper52786/StoryWeaver-7b-Instruct-v0.1) * [N8Programs/Coxcomb](https://huggingface.co/N8Programs/Coxcomb) * [Norquinal/Mistral-7B-storywriter](https://huggingface.co/Norquinal/Mistral-7B-storywriter) ## ⚡ Quantized Models Thanks to MRadermacher for the quantized models **.GGUF** https://huggingface.co/mradermacher/StoryFusion-7B-GGUF ## 🧩 Configuration ```yaml models: - model: senseable/WestLake-7B-v2 # No parameters necessary for base model - model: kasper52786/StoryWeaver-7b-Instruct-v0.1 parameters: density: 0.53 weight: 0.4 - model: N8Programs/Coxcomb parameters: density: 0.53 weight: 0.3 - model: Norquinal/Mistral-7B-storywriter parameters: density: 0.53 weight: 0.3 merge_method: dare_ties base_model: senseable/WestLake-7B-v2 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "OmnicromsBrain/StoryFusion-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```