--- tags: - merge - mergekit - lazymergekit base_model: - mlabonne/AlphaMonarch-7B - Nexusflow/Starling-LM-7B-beta license: apache-2.0 language: - en --- # StarMonarch-7B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f158693196560d34495d54/kY82CwYmaGSt2k3iWjOOZ.png) # Description StarMonarch-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [Nexusflow/Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta) This model uses a context window of 8k. Special thanks to mlabonne and Nexusflow for the models. ## 🏆 Open LLM Leaderboard Evaluation Results | Metric |Value| |---------------------------------|----:| |Avg. |74.45| |AI2 Reasoning Challenge (25-Shot)|71.25| |HellaSwag (10-Shot) |87.00| |MMLU (5-Shot) |65.48| |TruthfulQA (0-shot) |67.20| |Winogrande (5-shot) |82.16| |GSM8k (5-shot) |73.62| ## 🧩 Configuration ```yaml slices: - sources: - model: mlabonne/AlphaMonarch-7B layer_range: [0, 32] - model: Nexusflow/Starling-LM-7B-beta layer_range: [0, 32] merge_method: slerp base_model: mlabonne/AlphaMonarch-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Ppoyaa/StarMonarch-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```