--- language: - en license: apache-2.0 library_name: transformers tags: - code datasets: - Leon-Leee/wizardlm_evol_instruct_v2_196K_backuped - m-a-p/Code-Feedback - openbmb/UltraInteract_sft - ise-uiuc/Magicoder-Evol-Instruct-110K - flytech/python-codes-25k metrics: - code_eval --- ## AIGCodeGeek-DS-6.7B ### Introduction AIGCodeGeek-DS-6.7B is the first released version of our Code-LLM family with competitive performance on public and private benchmarks. ### Model Details #### Model Description - Developed by: [Leon Li](https://huggingface.co/Leon-Leee) - License: [DeepSeek](https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL) - Fine-tuned from [deepseek-ai/deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base) with full parameters ### Training data A mixture of samples from high-quality open-source (read *Acknowledgements*) and our private datasets. We have made contamination detection as Magicoder/Bigcode did. ### Evaluation results to be added. ### Requirements It should work with the same requirements as DeepSeek-Coder-6.7B or the following packages: ```torch>=2.0 tokenizers>=0.14.0 transformers>=4.35.0 accelerate sympy>=1.12 pebble timeout-decorator attrdict ``` ### QuickStart ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("aigcode/AIGCodeGeek-DS-6.7B", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("aigcode/AIGCodeGeek-DS-6.7B", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() messages=[ { 'role': 'user', 'content': "write a quick sort algorithm in python."} ] inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) # tokenizer.eos_token_id is the id of <|EOT|> token outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) ``` ### Limits ### Acknowledgements We gain a lot of knowledge and resources from the open-source community: - [DeepSeekCoder](https://huggingface.co/deepseek-ai): impressive model series and insightful tech reports - [WizardCoder](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder): Evol Instruct and public datasets - We used a ([Leon-Leee/wizardlm_evol_instruct_v2_196K_backuped](https://huggingface.co/datasets/Leon-Leee/wizardlm_evol_instruct_v2_196K_backuped)) since this original has been deleted. - [Magicoder](https://github.com/ise-uiuc/magicoder/): OSS-Instruct, [Magicoder-Evol-Instruct-110K](https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K) from theblackcat102/evol-codealpaca-v1(https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1) - [Eurus](https://github.com/OpenBMB/Eurus): creative datasets for reasoning, [openbmb/UltraInteract_sft](https://huggingface.co/datasets/openbmb/UltraInteract_sft) - [OpenCoderInterpreter](https://opencodeinterpreter.github.io/): well-designed system and datasets [m-a-p/Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback) - [flytech/python-codes-25k](https://huggingface.co/datasets/flytech/python-codes-25k): diversity - [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory): easily used to finetune base models