--- license: apache-2.0 language: - ja library_name: transformers --- microsoft/layoutxlm-base finetuned on XFUND.ja Training Results { "epoch": 40.0, "eval_accuracy": 0.7919082377476538, "eval_f1": 0.7886944818304172, "eval_loss": 1.6934013366699219, "eval_mem_cpu_alloc_delta": 819200, "eval_mem_cpu_peaked_delta": 0, "eval_mem_gpu_alloc_delta": 0, "eval_mem_gpu_peaked_delta": 377472512, "eval_precision": 0.7367979882648784, "eval_recall": 0.8484555984555985, "eval_runtime": 4.2599, "eval_samples": 71, "eval_samples_per_second": 16.667, "init_mem_cpu_alloc_delta": 1262002176, "init_mem_cpu_peaked_delta": 767479808, "init_mem_gpu_alloc_delta": 1481701376, "init_mem_gpu_peaked_delta": 0, "train_mem_cpu_alloc_delta": 28925952, "train_mem_cpu_peaked_delta": 1562083328, "train_mem_gpu_alloc_delta": 4458109440, "train_mem_gpu_peaked_delta": 7030973440, "train_runtime": 1135.9773, "train_samples": 194, "train_samples_per_second": 0.88 } code: | from transformers import LayoutXLMProcessor, LayoutLMv2ForTokenClassification processor = LayoutXLMProcessor.from_pretrained("amir22010/layoutxlm-xfund-ja") model = LayoutLMv2ForTokenClassification.from_pretrained("amir22010/layoutxlm-xfund-ja",num_labels = 7)