--- base_model: google/gemma-2-2b datasets: - cognitivecomputations/Dolphin-2.9 - m-a-p/CodeFeedback-Filtered-Instruction - cognitivecomputations/dolphin-coder - cognitivecomputations/samantha-data - microsoft/orca-math-word-problems-200k - mlabonne/FineTome-100k - arcee/agent_data - PawanKrd/math-gpt-4o-200k - cognitivecomputations/SystemChat-2.0 license: gemma tags: - generated_from_trainer - mlx --- # cmcmaster/rheum-dolphin-2.9.4-gemma2-2b The Model [cmcmaster/rheum-dolphin-2.9.4-gemma2-2b](https://huggingface.co/cmcmaster/rheum-dolphin-2.9.4-gemma2-2b) was converted to MLX format from [cognitivecomputations/dolphin-2.9.4-gemma2-2b](https://huggingface.co/cognitivecomputations/dolphin-2.9.4-gemma2-2b) using mlx-lm version **0.18.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("cmcmaster/rheum-dolphin-2.9.4-gemma2-2b") response = generate(model, tokenizer, prompt="hello", verbose=True) ```