holylovenia
commited on
Commit
•
123bdb6
1
Parent(s):
bf39853
Upload myxnli.py with huggingface_hub
Browse files
myxnli.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from seacrowd.utils import schemas
|
7 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
8 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
9 |
+
|
10 |
+
|
11 |
+
_CITATION = """
|
12 |
+
@misc{myXNLI2023,
|
13 |
+
title = "myXNLI",
|
14 |
+
author = "akhtet",
|
15 |
+
year = "202",
|
16 |
+
url = "https://github.com/akhtet/myXNLI",
|
17 |
+
}
|
18 |
+
"""
|
19 |
+
|
20 |
+
_DATASETNAME = "myxnli"
|
21 |
+
|
22 |
+
_DESCRIPTION = """
|
23 |
+
The myXNLI corpus is a collection of Myanmar language data designed for the Natural Language Inference (NLI) task, which
|
24 |
+
originated from the XNLI and MultiNLI English datasets. The 7,500 sentence pairs from the XNLI English development and
|
25 |
+
test sets are human-translated into Myanmar. The 392,702 data from the NLI English training data is translated using
|
26 |
+
machine translation. In addition, it also extends its scope by adding Myanmar translations to the XNLI 15-language
|
27 |
+
parallel corpus, to create a 16-language parallel corpus.
|
28 |
+
"""
|
29 |
+
|
30 |
+
_HOMEPAGE = "https://github.com/akhtet/myXNLI"
|
31 |
+
|
32 |
+
_LANGUAGES = ["mya"]
|
33 |
+
|
34 |
+
_LICENSE = Licenses.CC_BY_NC_4_0.value
|
35 |
+
|
36 |
+
_LOCAL = False
|
37 |
+
|
38 |
+
_URLS = {
|
39 |
+
_DATASETNAME: {
|
40 |
+
"train": "https://huggingface.co/datasets/akhtet/myXNLI/resolve/main/data/train-00000-of-00001-2614419e00195781.parquet",
|
41 |
+
"dev": "https://huggingface.co/datasets/akhtet/myXNLI/resolve/main/data/validation-00000-of-00001-9c168eb31d1d810b.parquet",
|
42 |
+
"test": "https://huggingface.co/datasets/akhtet/myXNLI/resolve/main/data/test-00000-of-00001-0fd9f93baf8c9cdb.parquet",
|
43 |
+
},
|
44 |
+
}
|
45 |
+
|
46 |
+
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT]
|
47 |
+
|
48 |
+
_SOURCE_VERSION = "1.1.0"
|
49 |
+
|
50 |
+
_SEACROWD_VERSION = "2024.06.20"
|
51 |
+
|
52 |
+
|
53 |
+
class MyXNLIDataset(datasets.GeneratorBasedBuilder):
|
54 |
+
"""The myXNLI corpus is a collection of Myanmar language data designed for the Natural Language Inference task."""
|
55 |
+
|
56 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
57 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
58 |
+
|
59 |
+
BUILDER_CONFIGS = [
|
60 |
+
SEACrowdConfig(
|
61 |
+
name=f"{_DATASETNAME}_source",
|
62 |
+
version=SOURCE_VERSION,
|
63 |
+
description=f"{_DATASETNAME} source schema",
|
64 |
+
schema="source",
|
65 |
+
subset_id=_DATASETNAME,
|
66 |
+
),
|
67 |
+
SEACrowdConfig(
|
68 |
+
name=f"{_DATASETNAME}_seacrowd_pairs",
|
69 |
+
version=SEACROWD_VERSION,
|
70 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
71 |
+
schema="seacrowd_pairs",
|
72 |
+
subset_id=_DATASETNAME,
|
73 |
+
),
|
74 |
+
]
|
75 |
+
|
76 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
77 |
+
|
78 |
+
def _info(self) -> datasets.DatasetInfo:
|
79 |
+
if self.config.schema == "source":
|
80 |
+
features = datasets.Features(
|
81 |
+
{
|
82 |
+
"genre": datasets.Value("string"),
|
83 |
+
"label": datasets.ClassLabel(names=["contradiction", "entailment", "neutral"]),
|
84 |
+
"sentence1_en": datasets.Value("string"),
|
85 |
+
"sentence2_en": datasets.Value("string"),
|
86 |
+
"sentence1_my": datasets.Value("string"),
|
87 |
+
"sentence2_my": datasets.Value("string"),
|
88 |
+
}
|
89 |
+
)
|
90 |
+
|
91 |
+
elif self.config.schema == "seacrowd_pairs":
|
92 |
+
features = schemas.pairs_features(["contradiction", "entailment", "neutral"])
|
93 |
+
|
94 |
+
return datasets.DatasetInfo(
|
95 |
+
description=_DESCRIPTION,
|
96 |
+
features=features,
|
97 |
+
homepage=_HOMEPAGE,
|
98 |
+
license=_LICENSE,
|
99 |
+
citation=_CITATION,
|
100 |
+
)
|
101 |
+
|
102 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]:
|
103 |
+
"""Returns SplitGenerators."""
|
104 |
+
urls = _URLS[_DATASETNAME]
|
105 |
+
data_dir = dl_manager.download_and_extract(urls)
|
106 |
+
|
107 |
+
return [
|
108 |
+
datasets.SplitGenerator(
|
109 |
+
name=datasets.Split.TRAIN,
|
110 |
+
gen_kwargs={"filepath": data_dir, "split": "train"},
|
111 |
+
),
|
112 |
+
datasets.SplitGenerator(
|
113 |
+
name=datasets.Split.TEST,
|
114 |
+
gen_kwargs={"filepath": data_dir, "split": "test"},
|
115 |
+
),
|
116 |
+
datasets.SplitGenerator(
|
117 |
+
name=datasets.Split.VALIDATION,
|
118 |
+
gen_kwargs={"filepath": data_dir, "split": "dev"},
|
119 |
+
),
|
120 |
+
]
|
121 |
+
|
122 |
+
def _generate_examples(self, filepath: Path, split: str) -> tuple[int, dict]:
|
123 |
+
if self.config.schema == "source":
|
124 |
+
df = pd.read_parquet(filepath[split])
|
125 |
+
for i, row in df.iterrows():
|
126 |
+
yield i, {
|
127 |
+
"genre": row["genre"],
|
128 |
+
"label": row["label"],
|
129 |
+
"sentence1_en": row["sentence1_en"],
|
130 |
+
"sentence2_en": row["sentence2_en"],
|
131 |
+
"sentence1_my": row["sentence1_my"],
|
132 |
+
"sentence2_my": row["sentence2_my"],
|
133 |
+
}
|
134 |
+
|
135 |
+
elif self.config.schema == "seacrowd_pairs":
|
136 |
+
df = pd.read_parquet(filepath[split])
|
137 |
+
for i, row in df.iterrows():
|
138 |
+
yield i, {
|
139 |
+
"id": str(i),
|
140 |
+
"text_1": row["sentence1_my"],
|
141 |
+
"text_2": row["sentence2_my"],
|
142 |
+
"label": row["label"],
|
143 |
+
}
|