system HF staff commited on
Commit
95979e3
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - yo
8
+ licenses:
9
+ - cc-by-nc-4-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 100K<n<1M
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - sequence-modeling
18
+ task_ids:
19
+ - language-modeling
20
+ ---
21
+
22
+ # Dataset Card for Yorùbá Text C3
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-fields)
32
+ - [Data Splits](#data-splits)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+
47
+ ## Dataset Description
48
+
49
+ - **Homepage:** https://www.aclweb.org/anthology/2020.lrec-1.335
50
+ - **Repository:** https://github.com/ajesujoba/YorubaTwi-Embedding/
51
+ - **Paper:** https://www.aclweb.org/anthology/2020.lrec-1.335
52
+ - **Leaderboard:**
53
+ - **Point of Contact:** [Jesujoba Alabi](mailto:[email protected])
54
+
55
+ ### Dataset Summary
56
+
57
+ Yorùbá Text C3 was collected from various sources from the web (Bible, JW300, books, news articles, wikipedia, etc)
58
+ to compare pre-trained word embeddings (Fasttext and BERT) and embeddings and embeddings trained on curated Yorùbá Texts.
59
+ The dataset consists of clean texts (i.e texts with proper Yorùbá diacritics) like the Bible & JW300 and noisy texts (
60
+ with incorrect or absent diacritics)
61
+ from other online sources like Wikipedia, BBC Yorùbá, and VON Yorùbá
62
+
63
+
64
+ ### Supported Tasks and Leaderboards
65
+
66
+ For training word embeddings and language models on Yoruba texts.
67
+
68
+ ### Languages
69
+
70
+ The language supported is Yorùbá.
71
+
72
+ ## Dataset Structure
73
+
74
+ ### Data Instances
75
+
76
+ A data point is a sentence in each line.
77
+ {
78
+ 'text': 'lílo àkàbà — ǹjẹ́ o máa ń ṣe àyẹ̀wò wọ̀nyí tó lè dáàbò bò ẹ́'
79
+ }
80
+ ### Data Fields
81
+
82
+ - `text`: a `string` feature.
83
+ a sentence text per line
84
+
85
+ ### Data Splits
86
+
87
+ Contains only the training split.
88
+
89
+ ## Dataset Creation
90
+
91
+ ### Curation Rationale
92
+
93
+ The data was created to help introduce resources to new language - Yorùbá.
94
+
95
+ ### Source Data
96
+
97
+ #### Initial Data Collection and Normalization
98
+
99
+ The dataset comes from various sources of the web like Bible, JW300, books, news articles, wikipedia, etc.
100
+ See Table 1 in the [paper](https://www.aclweb.org/anthology/2020.lrec-1.335/) for the summary of the dataset and statistics
101
+
102
+ #### Who are the source language producers?
103
+
104
+ [Jehovah Witness](https://www.jw.org/yo/) (JW300)
105
+ [Yorùbá Bible](http://www.bible.com/)
106
+ [Yorùbá Wikipedia](dumps.wikimedia.org/yowiki)
107
+ [BBC Yorùbá](bbc.com/yoruba)
108
+ [VON Yorùbá](https://von.gov.ng/)
109
+ [Global Voices Yorùbá]( yo.globalvoices.org)
110
+
111
+ And other sources, see https://www.aclweb.org/anthology/2020.lrec-1.335/
112
+ ### Annotations
113
+
114
+ #### Annotation process
115
+
116
+ [More Information Needed]
117
+
118
+ #### Who are the annotators?
119
+
120
+ [More Information Needed]
121
+
122
+ ### Personal and Sensitive Information
123
+
124
+ [More Information Needed]
125
+
126
+ ## Considerations for Using the Data
127
+
128
+ ### Social Impact of Dataset
129
+
130
+ [More Information Needed]
131
+
132
+ ### Discussion of Biases
133
+
134
+ The dataset is biased to the religion domain (Christianity) because of the inclusion of JW300 and the Bible.
135
+
136
+ ### Other Known Limitations
137
+
138
+ [More Information Needed]
139
+
140
+ ## Additional Information
141
+
142
+ ### Dataset Curators
143
+
144
+ The data sets were curated by Jesujoba Alabi and David Adelani, students of Saarland University, Saarbrücken, Germany .
145
+
146
+ ### Licensing Information
147
+
148
+
149
+ The data is under the [Creative Commons Attribution-NonCommercial 4.0 ](https://creativecommons.org/licenses/by-nc/4.0/legalcode)
150
+
151
+ ### Citation Information
152
+ ```
153
+ @inproceedings{alabi-etal-2020-massive,
154
+ title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\`u}b{\'a} and {T}wi",
155
+ author = "Alabi, Jesujoba and
156
+ Amponsah-Kaakyire, Kwabena and
157
+ Adelani, David and
158
+ Espa{\~n}a-Bonet, Cristina",
159
+ booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
160
+ month = may,
161
+ year = "2020",
162
+ address = "Marseille, France",
163
+ publisher = "European Language Resources Association",
164
+ url = "https://www.aclweb.org/anthology/2020.lrec-1.335",
165
+ pages = "2754--2762",
166
+ abstract = "The success of several architectures to learn semantic representations from unannotated text and the availability of these kind of texts in online multilingual resources such as Wikipedia has facilitated the massive and automatic creation of resources for multiple languages. The evaluation of such resources is usually done for the high-resourced languages, where one has a smorgasbord of tasks and test sets to evaluate on. For low-resourced languages, the evaluation is more difficult and normally ignored, with the hope that the impressive capability of deep learning architectures to learn (multilingual) representations in the high-resourced setting holds in the low-resourced setting too. In this paper we focus on two African languages, Yor{\`u}b{\'a} and Twi, and compare the word embeddings obtained in this way, with word embeddings obtained from curated corpora and a language-dependent processing. We analyse the noise in the publicly available corpora, collect high quality and noisy data for the two languages and quantify the improvements that depend not only on the amount of data but on the quality too. We also use different architectures that learn word representations both from surface forms and characters to further exploit all the available information which showed to be important for these languages. For the evaluation, we manually translate the wordsim-353 word pairs dataset from English into Yor{\`u}b{\'a} and Twi. We extend the analysis to contextual word embeddings and evaluate multilingual BERT on a named entity recognition task. For this, we annotate with named entities the Global Voices corpus for Yor{\`u}b{\'a}. As output of the work, we provide corpora, embeddings and the test suits for both languages.",
167
+ language = "English",
168
+ ISBN = "979-10-95546-34-4",
169
+ }
170
+ ```
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"plain_text": {"description": "Yoruba Text C3 is the largest Yoruba texts collected and used to train FastText embeddings in the \nYorubaTwi Embedding paper: https://www.aclweb.org/anthology/2020.lrec-1.335/\n", "citation": "@inproceedings{alabi-etal-2020-massive,\n title = \"Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\\`u}b{'a} and {T}wi\",\n author = \"Alabi, Jesujoba and\n Amponsah-Kaakyire, Kwabena and\n Adelani, David and\n Espa{\\~n}a-Bonet, Cristina\",\n booktitle = \"Proceedings of the 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.335\",\n pages = \"2754--2762\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://www.aclweb.org/anthology/2020.lrec-1.335/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "yoruba_twi_text_c3", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 77094396, "num_examples": 562238, "dataset_name": "yoruba_twi_text_c3"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1Nug7-Sri50mkJL4GrWw6C2ZIbfeU-6Am": {"num_bytes": 75407454, "checksum": "171f71c1d2249fa300219a335361c9b04f96b0abf514f351128514d4ccc03b50"}}, "download_size": 75407454, "post_processing_size": null, "dataset_size": 77094396, "size_in_bytes": 152501850}, "yoruba_text_c3": {"description": "Yoruba Text C3 is the largest Yoruba texts collected and used to train FastText embeddings in the \nYorubaTwi Embedding paper: https://www.aclweb.org/anthology/2020.lrec-1.335/\n", "citation": "@inproceedings{alabi-etal-2020-massive,\n title = \"Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\\`u}b{'a} and {T}wi\",\n author = \"Alabi, Jesujoba and\n Amponsah-Kaakyire, Kwabena and\n Adelani, David and\n Espa{\\~n}a-Bonet, Cristina\",\n booktitle = \"Proceedings of the 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.335\",\n pages = \"2754--2762\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://www.aclweb.org/anthology/2020.lrec-1.335/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "yoruba_twi_text_c3", "config_name": "yoruba_text_c3", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 77094396, "num_examples": 562238, "dataset_name": "yoruba_twi_text_c3"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1Nug7-Sri50mkJL4GrWw6C2ZIbfeU-6Am": {"num_bytes": 75407454, "checksum": "171f71c1d2249fa300219a335361c9b04f96b0abf514f351128514d4ccc03b50"}}, "download_size": 75407454, "post_processing_size": null, "dataset_size": 77094396, "size_in_bytes": 152501850}}
dummy/yoruba_text_c3/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d391c4b1a8287f6a9fbcdbab84ecb38740dd9d4a0b8a56d6e9cf5da83b35afe
3
+ size 586
yoruba_text_c3.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """The Yoruba Text C3 dataset."""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import datasets
22
+
23
+
24
+ _DESCRIPTION = """\
25
+ Yoruba Text C3 is the largest Yoruba texts collected and used to train FastText embeddings in the
26
+ YorubaTwi Embedding paper: https://www.aclweb.org/anthology/2020.lrec-1.335/
27
+ """
28
+
29
+ _CITATION = """\
30
+ @inproceedings{alabi-etal-2020-massive,
31
+ title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of Yoruba and {T}wi",
32
+ author = "Alabi, Jesujoba and
33
+ Amponsah-Kaakyire, Kwabena and
34
+ Adelani, David and
35
+ Espa{\\~n}a-Bonet, Cristina",
36
+ booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
37
+ month = may,
38
+ year = "2020",
39
+ address = "Marseille, France",
40
+ publisher = "European Language Resources Association",
41
+ url = "https://www.aclweb.org/anthology/2020.lrec-1.335",
42
+ pages = "2754--2762",
43
+ language = "English",
44
+ ISBN = "979-10-95546-34-4",
45
+ }
46
+ """
47
+
48
+ URL = "https://drive.google.com/uc?export=download&id=1Nug7-Sri50mkJL4GrWw6C2ZIbfeU-6Am"
49
+
50
+
51
+ class YorubaTextC3Config(datasets.BuilderConfig):
52
+ """BuilderConfig for YorubaTextC3."""
53
+
54
+ def __init__(self, **kwargs):
55
+ """BuilderConfig for BookCorpus.
56
+ Args:
57
+ **kwargs: keyword arguments forwarded to super.
58
+ """
59
+ super(YorubaTextC3Config, self).__init__(**kwargs)
60
+
61
+
62
+ class YorubaTextC3(datasets.GeneratorBasedBuilder):
63
+ """Yoruba Text C3 dataset."""
64
+
65
+ BUILDER_CONFIGS = [
66
+ YorubaTextC3Config(
67
+ name="yoruba_text_c3",
68
+ version=datasets.Version("1.0.0"),
69
+ description="Yoruba Texts C3 ",
70
+ )
71
+ ]
72
+
73
+ def _info(self):
74
+ return datasets.DatasetInfo(
75
+ description=_DESCRIPTION,
76
+ features=datasets.Features(
77
+ {
78
+ "text": datasets.Value("string"),
79
+ }
80
+ ),
81
+ supervised_keys=None,
82
+ homepage="https://www.aclweb.org/anthology/2020.lrec-1.335/",
83
+ citation=_CITATION,
84
+ )
85
+
86
+ def _split_generators(self, dl_manager):
87
+ arch_path = dl_manager.download_and_extract(URL)
88
+
89
+ return [
90
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": arch_path}),
91
+ ]
92
+
93
+ def _generate_examples(self, filepath):
94
+ with open(filepath, mode="r", encoding="utf-8") as f:
95
+ lines = f.read().splitlines()
96
+ for id, line in enumerate(lines):
97
+ yield id, {"text": line.strip()}