[ { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Topology/Algebra/Monoid.lean", "full_name": "exists_open_nhds_one_split", "start": [475, 1], "end": [479, 61], "traced_tactics": [ { "tactic": "have : (fun a : M \u00d7 M => a.1 * a.2) \u207b\u00b9' s \u2208 \ud835\udcdd ((1, 1) : M \u00d7 M) :=\n tendsto_mul (by simpa only [one_mul] using hs)", "annotated_tactic": [ "have : (fun a : M \u00d7 M => a.1 * a.2) \u207b\u00b9' s \u2208 \ud835\udcdd ((1, 1) : M \u00d7 M) :=\n tendsto_mul (by simpa only [one_mul] using hs)", [ { "full_name": "tendsto_mul", "def_path": "Mathlib/Topology/Algebra/Monoid.lean", "def_pos": [113, 9], "def_end_pos": [113, 20] }, { "full_name": "one_mul", "def_path": "Mathlib/Algebra/Group/Defs.lean", "def_pos": [464, 9], "def_end_pos": [464, 16] } ] ], "state_before": "\u03b9 : Type u_1\n\u03b1 : Type u_2\nX : Type u_3\nM : Type u_4\nN : Type u_5\ninst\u271d\u00b3 : TopologicalSpace X\ninst\u271d\u00b2 : TopologicalSpace M\ninst\u271d\u00b9 : Monoid M\ninst\u271d : ContinuousMul M\ns : Set M\nhs : s \u2208 \ud835\udcdd 1\n\u22a2 \u2203 V, IsOpen V \u2227 1 \u2208 V \u2227 \u2200 (v : M), v \u2208 V \u2192 \u2200 (w : M), w \u2208 V \u2192 v * w \u2208 s", "state_after": "\u03b9 : Type u_1\n\u03b1 : Type u_2\nX : Type u_3\nM : Type u_4\nN : Type u_5\ninst\u271d\u00b3 : TopologicalSpace X\ninst\u271d\u00b2 : TopologicalSpace M\ninst\u271d\u00b9 : Monoid M\ninst\u271d : ContinuousMul M\ns : Set M\nhs : s \u2208 \ud835\udcdd 1\nthis : (fun a => a.1 * a.2) \u207b\u00b9' s \u2208 \ud835\udcdd (1, 1)\n\u22a2 \u2203 V, IsOpen V \u2227 1 \u2208 V \u2227 \u2200 (v : M), v \u2208 V \u2192 \u2200 (w : M), w \u2208 V \u2192 v * w \u2208 s" }, { "tactic": "simpa only [prod_subset_iff] using exists_nhds_square this", "annotated_tactic": [ "simpa only [prod_subset_iff] using exists_nhds_square this", [ { "full_name": "Set.prod_subset_iff", "def_path": "Mathlib/Data/Set/Prod.lean", "def_pos": [100, 9], "def_end_pos": [100, 24] }, { "full_name": "exists_nhds_square", "def_path": "Mathlib/Topology/Constructions.lean", "def_pos": [674, 9], "def_end_pos": [674, 27] } ] ], "state_before": "\u03b9 : Type u_1\n\u03b1 : Type u_2\nX : Type u_3\nM : Type u_4\nN : Type u_5\ninst\u271d\u00b3 : TopologicalSpace X\ninst\u271d\u00b2 : TopologicalSpace M\ninst\u271d\u00b9 : Monoid M\ninst\u271d : ContinuousMul M\ns : Set M\nhs : s \u2208 \ud835\udcdd 1\nthis : (fun a => a.1 * a.2) \u207b\u00b9' s \u2208 \ud835\udcdd (1, 1)\n\u22a2 \u2203 V, IsOpen V \u2227 1 \u2208 V \u2227 \u2200 (v : M), v \u2208 V \u2192 \u2200 (w : M), w \u2208 V \u2192 v * w \u2208 s", "state_after": "no goals" }, { "tactic": "simpa only [one_mul] using hs", "annotated_tactic": [ "simpa only [one_mul] using hs", [ { "full_name": "one_mul", "def_path": "Mathlib/Algebra/Group/Defs.lean", "def_pos": [464, 9], "def_end_pos": [464, 16] } ] ], "state_before": "\u03b9 : Type u_1\n\u03b1 : Type u_2\nX : Type u_3\nM : Type u_4\nN : Type u_5\ninst\u271d\u00b3 : TopologicalSpace X\ninst\u271d\u00b2 : TopologicalSpace M\ninst\u271d\u00b9 : Monoid M\ninst\u271d : ContinuousMul M\ns : Set M\nhs : s \u2208 \ud835\udcdd 1\n\u22a2 s \u2208 \ud835\udcdd (1 * 1)", "state_after": "no goals" } ] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Geometry/Manifold/ContMDiff.lean", "full_name": "ContMDiffAt.comp_of_eq", "start": [1039, 1], "end": [1041, 31], "traced_tactics": [ { "tactic": "subst hx", "annotated_tactic": ["subst hx", []], "state_before": "\ud835\udd5c : Type u_1\ninst\u271d\u00b3\u2077 : NontriviallyNormedField \ud835\udd5c\nE : Type u_2\ninst\u271d\u00b3\u2076 : NormedAddCommGroup E\ninst\u271d\u00b3\u2075 : NormedSpace \ud835\udd5c E\nH : Type u_3\ninst\u271d\u00b3\u2074 : TopologicalSpace H\nI : ModelWithCorners \ud835\udd5c E H\nM : Type u_4\ninst\u271d\u00b3\u00b3 : TopologicalSpace M\ninst\u271d\u00b3\u00b2 : ChartedSpace H M\ninst\u271d\u00b3\u00b9 : SmoothManifoldWithCorners I M\nE' : Type u_5\ninst\u271d\u00b3\u2070 : NormedAddCommGroup E'\ninst\u271d\u00b2\u2079 : NormedSpace \ud835\udd5c E'\nH' : Type u_6\ninst\u271d\u00b2\u2078 : TopologicalSpace H'\nI' : ModelWithCorners \ud835\udd5c E' H'\nM' : Type u_7\ninst\u271d\u00b2\u2077 : TopologicalSpace M'\ninst\u271d\u00b2\u2076 : ChartedSpace H' M'\ninst\u271d\u00b2\u2075 : SmoothManifoldWithCorners I' M'\nE'' : Type u_8\ninst\u271d\u00b2\u2074 : NormedAddCommGroup E''\ninst\u271d\u00b2\u00b3 : NormedSpace \ud835\udd5c E''\nH'' : Type u_9\ninst\u271d\u00b2\u00b2 : TopologicalSpace H''\nI'' : ModelWithCorners \ud835\udd5c E'' H''\nM'' : Type u_10\ninst\u271d\u00b2\u00b9 : TopologicalSpace M''\ninst\u271d\u00b2\u2070 : ChartedSpace H'' M''\nF : Type u_11\ninst\u271d\u00b9\u2079 : NormedAddCommGroup F\ninst\u271d\u00b9\u2078 : NormedSpace \ud835\udd5c F\nG : Type u_12\ninst\u271d\u00b9\u2077 : TopologicalSpace G\nJ : ModelWithCorners \ud835\udd5c F G\nN : Type u_13\ninst\u271d\u00b9\u2076 : TopologicalSpace N\ninst\u271d\u00b9\u2075 : ChartedSpace G N\ninst\u271d\u00b9\u2074 : SmoothManifoldWithCorners J N\nF' : Type u_14\ninst\u271d\u00b9\u00b3 : NormedAddCommGroup F'\ninst\u271d\u00b9\u00b2 : NormedSpace \ud835\udd5c F'\nG' : Type u_15\ninst\u271d\u00b9\u00b9 : TopologicalSpace G'\nJ' : ModelWithCorners \ud835\udd5c F' G'\nN' : Type u_16\ninst\u271d\u00b9\u2070 : TopologicalSpace N'\ninst\u271d\u2079 : ChartedSpace G' N'\ninst\u271d\u2078 : SmoothManifoldWithCorners J' N'\nF\u2081 : Type u_17\ninst\u271d\u2077 : NormedAddCommGroup F\u2081\ninst\u271d\u2076 : NormedSpace \ud835\udd5c F\u2081\nF\u2082 : Type u_18\ninst\u271d\u2075 : NormedAddCommGroup F\u2082\ninst\u271d\u2074 : NormedSpace \ud835\udd5c F\u2082\nF\u2083 : Type u_19\ninst\u271d\u00b3 : NormedAddCommGroup F\u2083\ninst\u271d\u00b2 : NormedSpace \ud835\udd5c F\u2083\nF\u2084 : Type u_20\ninst\u271d\u00b9 : NormedAddCommGroup F\u2084\ninst\u271d : NormedSpace \ud835\udd5c F\u2084\ne : LocalHomeomorph M H\ne' : LocalHomeomorph M' H'\nf f\u2081 : M \u2192 M'\ns s\u2081 t : Set M\nx\u271d : M\nm n : \u2115\u221e\ng : M' \u2192 M''\nx : M\ny : M'\nhg : ContMDiffAt I' I'' n g y\nhf : ContMDiffAt I I' n f x\nhx : f x = y\n\u22a2 ContMDiffAt I I'' n (g \u2218 f) x", "state_after": "\ud835\udd5c : Type u_1\ninst\u271d\u00b3\u2077 : NontriviallyNormedField \ud835\udd5c\nE : Type u_2\ninst\u271d\u00b3\u2076 : NormedAddCommGroup E\ninst\u271d\u00b3\u2075 : NormedSpace \ud835\udd5c E\nH : Type u_3\ninst\u271d\u00b3\u2074 : TopologicalSpace H\nI : ModelWithCorners \ud835\udd5c E H\nM : Type u_4\ninst\u271d\u00b3\u00b3 : TopologicalSpace M\ninst\u271d\u00b3\u00b2 : ChartedSpace H M\ninst\u271d\u00b3\u00b9 : SmoothManifoldWithCorners I M\nE' : Type u_5\ninst\u271d\u00b3\u2070 : NormedAddCommGroup E'\ninst\u271d\u00b2\u2079 : NormedSpace \ud835\udd5c E'\nH' : Type u_6\ninst\u271d\u00b2\u2078 : TopologicalSpace H'\nI' : ModelWithCorners \ud835\udd5c E' H'\nM' : Type u_7\ninst\u271d\u00b2\u2077 : TopologicalSpace M'\ninst\u271d\u00b2\u2076 : ChartedSpace H' M'\ninst\u271d\u00b2\u2075 : SmoothManifoldWithCorners I' M'\nE'' : Type u_8\ninst\u271d\u00b2\u2074 : NormedAddCommGroup E''\ninst\u271d\u00b2\u00b3 : NormedSpace \ud835\udd5c E''\nH'' : Type u_9\ninst\u271d\u00b2\u00b2 : TopologicalSpace H''\nI'' : ModelWithCorners \ud835\udd5c E'' H''\nM'' : Type u_10\ninst\u271d\u00b2\u00b9 : TopologicalSpace M''\ninst\u271d\u00b2\u2070 : ChartedSpace H'' M''\nF : Type u_11\ninst\u271d\u00b9\u2079 : NormedAddCommGroup F\ninst\u271d\u00b9\u2078 : NormedSpace \ud835\udd5c F\nG : Type u_12\ninst\u271d\u00b9\u2077 : TopologicalSpace G\nJ : ModelWithCorners \ud835\udd5c F G\nN : Type u_13\ninst\u271d\u00b9\u2076 : TopologicalSpace N\ninst\u271d\u00b9\u2075 : ChartedSpace G N\ninst\u271d\u00b9\u2074 : SmoothManifoldWithCorners J N\nF' : Type u_14\ninst\u271d\u00b9\u00b3 : NormedAddCommGroup F'\ninst\u271d\u00b9\u00b2 : NormedSpace \ud835\udd5c F'\nG' : Type u_15\ninst\u271d\u00b9\u00b9 : TopologicalSpace G'\nJ' : ModelWithCorners \ud835\udd5c F' G'\nN' : Type u_16\ninst\u271d\u00b9\u2070 : TopologicalSpace N'\ninst\u271d\u2079 : ChartedSpace G' N'\ninst\u271d\u2078 : SmoothManifoldWithCorners J' N'\nF\u2081 : Type u_17\ninst\u271d\u2077 : NormedAddCommGroup F\u2081\ninst\u271d\u2076 : NormedSpace \ud835\udd5c F\u2081\nF\u2082 : Type u_18\ninst\u271d\u2075 : NormedAddCommGroup F\u2082\ninst\u271d\u2074 : NormedSpace \ud835\udd5c F\u2082\nF\u2083 : Type u_19\ninst\u271d\u00b3 : NormedAddCommGroup F\u2083\ninst\u271d\u00b2 : NormedSpace \ud835\udd5c F\u2083\nF\u2084 : Type u_20\ninst\u271d\u00b9 : NormedAddCommGroup F\u2084\ninst\u271d : NormedSpace \ud835\udd5c F\u2084\ne : LocalHomeomorph M H\ne' : LocalHomeomorph M' H'\nf f\u2081 : M \u2192 M'\ns s\u2081 t : Set M\nx\u271d : M\nm n : \u2115\u221e\ng : M' \u2192 M''\nx : M\nhf : ContMDiffAt I I' n f x\nhg : ContMDiffAt I' I'' n g (f x)\n\u22a2 ContMDiffAt I I'' n (g \u2218 f) x" }, { "tactic": "exact hg.comp x hf", "annotated_tactic": ["exact hg.comp x hf", []], "state_before": "\ud835\udd5c : Type u_1\ninst\u271d\u00b3\u2077 : NontriviallyNormedField \ud835\udd5c\nE : Type u_2\ninst\u271d\u00b3\u2076 : NormedAddCommGroup E\ninst\u271d\u00b3\u2075 : NormedSpace \ud835\udd5c E\nH : Type u_3\ninst\u271d\u00b3\u2074 : TopologicalSpace H\nI : ModelWithCorners \ud835\udd5c E H\nM : Type u_4\ninst\u271d\u00b3\u00b3 : TopologicalSpace M\ninst\u271d\u00b3\u00b2 : ChartedSpace H M\ninst\u271d\u00b3\u00b9 : SmoothManifoldWithCorners I M\nE' : Type u_5\ninst\u271d\u00b3\u2070 : NormedAddCommGroup E'\ninst\u271d\u00b2\u2079 : NormedSpace \ud835\udd5c E'\nH' : Type u_6\ninst\u271d\u00b2\u2078 : TopologicalSpace H'\nI' : ModelWithCorners \ud835\udd5c E' H'\nM' : Type u_7\ninst\u271d\u00b2\u2077 : TopologicalSpace M'\ninst\u271d\u00b2\u2076 : ChartedSpace H' M'\ninst\u271d\u00b2\u2075 : SmoothManifoldWithCorners I' M'\nE'' : Type u_8\ninst\u271d\u00b2\u2074 : NormedAddCommGroup E''\ninst\u271d\u00b2\u00b3 : NormedSpace \ud835\udd5c E''\nH'' : Type u_9\ninst\u271d\u00b2\u00b2 : TopologicalSpace H''\nI'' : ModelWithCorners \ud835\udd5c E'' H''\nM'' : Type u_10\ninst\u271d\u00b2\u00b9 : TopologicalSpace M''\ninst\u271d\u00b2\u2070 : ChartedSpace H'' M''\nF : Type u_11\ninst\u271d\u00b9\u2079 : NormedAddCommGroup F\ninst\u271d\u00b9\u2078 : NormedSpace \ud835\udd5c F\nG : Type u_12\ninst\u271d\u00b9\u2077 : TopologicalSpace G\nJ : ModelWithCorners \ud835\udd5c F G\nN : Type u_13\ninst\u271d\u00b9\u2076 : TopologicalSpace N\ninst\u271d\u00b9\u2075 : ChartedSpace G N\ninst\u271d\u00b9\u2074 : SmoothManifoldWithCorners J N\nF' : Type u_14\ninst\u271d\u00b9\u00b3 : NormedAddCommGroup F'\ninst\u271d\u00b9\u00b2 : NormedSpace \ud835\udd5c F'\nG' : Type u_15\ninst\u271d\u00b9\u00b9 : TopologicalSpace G'\nJ' : ModelWithCorners \ud835\udd5c F' G'\nN' : Type u_16\ninst\u271d\u00b9\u2070 : TopologicalSpace N'\ninst\u271d\u2079 : ChartedSpace G' N'\ninst\u271d\u2078 : SmoothManifoldWithCorners J' N'\nF\u2081 : Type u_17\ninst\u271d\u2077 : NormedAddCommGroup F\u2081\ninst\u271d\u2076 : NormedSpace \ud835\udd5c F\u2081\nF\u2082 : Type u_18\ninst\u271d\u2075 : NormedAddCommGroup F\u2082\ninst\u271d\u2074 : NormedSpace \ud835\udd5c F\u2082\nF\u2083 : Type u_19\ninst\u271d\u00b3 : NormedAddCommGroup F\u2083\ninst\u271d\u00b2 : NormedSpace \ud835\udd5c F\u2083\nF\u2084 : Type u_20\ninst\u271d\u00b9 : NormedAddCommGroup F\u2084\ninst\u271d : NormedSpace \ud835\udd5c F\u2084\ne : LocalHomeomorph M H\ne' : LocalHomeomorph M' H'\nf f\u2081 : M \u2192 M'\ns s\u2081 t : Set M\nx\u271d : M\nm n : \u2115\u221e\ng : M' \u2192 M''\nx : M\nhf : ContMDiffAt I I' n f x\nhg : ContMDiffAt I' I'' n g (f x)\n\u22a2 ContMDiffAt I I'' n (g \u2218 f) x", "state_after": "no goals" } ] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/LinearAlgebra/AffineSpace/Midpoint.lean", "full_name": "midpoint_vsub", "start": [133, 1], "end": [137, 44], "traced_tactics": [ { "tactic": "rw [\u2190 vsub_sub_vsub_cancel_right p\u2081 p p\u2082, smul_sub, sub_eq_add_neg, \u2190 smul_neg,\n neg_vsub_eq_vsub_rev, add_assoc, invOf_two_smul_add_invOf_two_smul, \u2190 vadd_vsub_assoc,\n midpoint_comm, midpoint, lineMap_apply]", "annotated_tactic": [ "rw [\u2190 vsub_sub_vsub_cancel_right p\u2081 p p\u2082, smul_sub, sub_eq_add_neg, \u2190 smul_neg,\n neg_vsub_eq_vsub_rev, add_assoc, invOf_two_smul_add_invOf_two_smul, \u2190 vadd_vsub_assoc,\n midpoint_comm, midpoint, lineMap_apply]", [ { "full_name": "vsub_sub_vsub_cancel_right", "def_path": "Mathlib/Algebra/AddTorsor.lean", "def_pos": [174, 9], "def_end_pos": [174, 35] }, { "full_name": "smul_sub", "def_path": "Mathlib/GroupTheory/GroupAction/Defs.lean", "def_pos": [988, 9], "def_end_pos": [988, 17] }, { "full_name": "sub_eq_add_neg", "def_path": "Mathlib/Algebra/Group/Defs.lean", "def_pos": [975, 3], "def_end_pos": [975, 14] }, { "full_name": "smul_neg", "def_path": "Mathlib/GroupTheory/GroupAction/Defs.lean", "def_pos": [984, 9], "def_end_pos": [984, 17] }, { "full_name": "neg_vsub_eq_vsub_rev", "def_path": "Mathlib/Algebra/AddTorsor.lean", "def_pos": [156, 9], "def_end_pos": [156, 29] }, { "full_name": "add_assoc", "def_path": "Mathlib/Algebra/Group/Defs.lean", "def_pos": [263, 3], "def_end_pos": [263, 14] }, { "full_name": "invOf_two_smul_add_invOf_two_smul", "def_path": "Mathlib/Algebra/Module/Basic.lean", "def_pos": [111, 9], "def_end_pos": [111, 42] }, { "full_name": "vadd_vsub_assoc", "def_path": "Mathlib/Algebra/AddTorsor.lean", "def_pos": [119, 9], "def_end_pos": [119, 24] }, { "full_name": "midpoint_comm", "def_path": "Mathlib/LinearAlgebra/AffineSpace/Midpoint.lean", "def_pos": [73, 9], "def_end_pos": [73, 22] }, { "full_name": "midpoint", "def_path": "Mathlib/LinearAlgebra/AffineSpace/Midpoint.lean", "def_pos": [43, 5], "def_end_pos": [43, 13] }, { "full_name": "AffineMap.lineMap_apply", "def_path": "Mathlib/LinearAlgebra/AffineSpace/AffineMap.lean", "def_pos": [514, 9], "def_end_pos": [514, 22] } ] ], "state_before": "R : Type u_1\nV : Type u_2\nV' : Type u_3\nP : Type u_4\nP' : Type u_5\ninst\u271d\u2077 : Ring R\ninst\u271d\u2076 : Invertible 2\ninst\u271d\u2075 : AddCommGroup V\ninst\u271d\u2074 : Module R V\ninst\u271d\u00b3 : AddTorsor V P\ninst\u271d\u00b2 : AddCommGroup V'\ninst\u271d\u00b9 : Module R V'\ninst\u271d : AddTorsor V' P'\nx y z p\u2081 p\u2082 p : P\n\u22a2 midpoint R p\u2081 p\u2082 -\u1d65 p = \u215f2 \u2022 (p\u2081 -\u1d65 p) + \u215f2 \u2022 (p\u2082 -\u1d65 p)", "state_after": "no goals" } ] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/ModelTheory/Satisfiability.lean", "full_name": "FirstOrder.Language.Theory.models_iff_finset_models", "start": [367, 1], "end": [381, 38], "traced_tactics": [ { "tactic": "simp only [models_iff_not_satisfiable]", "annotated_tactic": [ "simp only [models_iff_not_satisfiable]", [ { "full_name": "FirstOrder.Language.Theory.models_iff_not_satisfiable", "def_path": "Mathlib/ModelTheory/Satisfiability.lean", "def_pos": [326, 9], "def_end_pos": [326, 35] } ] ], "state_before": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\n\u22a2 T \u22a8\u1d47 \u03c6 \u2194 \u2203 T0, \u2191T0 \u2286 T \u2227 \u2191T0 \u22a8\u1d47 \u03c6", "state_after": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\n\u22a2 \u00acIsSatisfiable (T \u222a {Formula.not \u03c6}) \u2194 \u2203 T0, \u2191T0 \u2286 T \u2227 \u00acIsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})" }, { "tactic": "rw [\u2190 not_iff_not, not_not, isSatisfiable_iff_isFinitelySatisfiable, IsFinitelySatisfiable]", "annotated_tactic": [ "rw [\u2190 not_iff_not, not_not, isSatisfiable_iff_isFinitelySatisfiable, IsFinitelySatisfiable]", [ { "full_name": "not_iff_not", "def_path": "Mathlib/Logic/Basic.lean", "def_pos": [439, 9], "def_end_pos": [439, 20] }, { "full_name": "Classical.not_not", "def_path": "lake-packages/std/Std/Logic.lean", "def_pos": [683, 24], "def_end_pos": [683, 31] }, { "full_name": "FirstOrder.Language.Theory.isSatisfiable_iff_isFinitelySatisfiable", "def_path": "Mathlib/ModelTheory/Satisfiability.lean", "def_pos": [107, 9], "def_end_pos": [107, 48] }, { "full_name": "FirstOrder.Language.Theory.IsFinitelySatisfiable", "def_path": "Mathlib/ModelTheory/Satisfiability.lean", "def_pos": [69, 5], "def_end_pos": [69, 26] } ] ], "state_before": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\n\u22a2 \u00acIsSatisfiable (T \u222a {Formula.not \u03c6}) \u2194 \u2203 T0, \u2191T0 \u2286 T \u2227 \u00acIsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})", "state_after": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\n\u22a2 (\u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0) \u2194\n \u00ac\u2203 T0, \u2191T0 \u2286 T \u2227 \u00acIsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})" }, { "tactic": "push_neg", "annotated_tactic": ["push_neg", []], "state_before": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\n\u22a2 (\u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0) \u2194\n \u00ac\u2203 T0, \u2191T0 \u2286 T \u2227 \u00acIsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})", "state_after": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\n\u22a2 (\u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0) \u2194\n \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u2192 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})" }, { "tactic": "letI := Classical.decEq (Sentence L)", "annotated_tactic": [ "letI := Classical.decEq (Sentence L)", [ { "full_name": "Classical.decEq", "def_path": "Mathlib/Logic/Basic.lean", "def_pos": [983, 19], "def_end_pos": [983, 24] }, { "full_name": "FirstOrder.Language.Sentence", "def_path": "Mathlib/ModelTheory/Syntax.lean", "def_pos": [331, 5], "def_end_pos": [331, 13] } ] ], "state_before": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\n\u22a2 (\u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0) \u2194\n \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u2192 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})", "state_after": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\n\u22a2 (\u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0) \u2194\n \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u2192 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})" }, { "tactic": "constructor", "annotated_tactic": ["constructor", []], "state_before": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\n\u22a2 (\u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0) \u2194\n \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u2192 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})", "state_after": "case mp\nL : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\n\u22a2 (\u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0) \u2192\n \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u2192 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})\n\ncase mpr\nL : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\n\u22a2 (\u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u2192 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})) \u2192\n \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0" }, { "tactic": "intro h T0 hT0", "annotated_tactic": ["intro h T0 hT0", []], "state_before": "case mp\nL : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\n\u22a2 (\u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0) \u2192\n \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u2192 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})", "state_after": "case mp\nL : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\nh : \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0\nT0 : Finset (Sentence L)\nhT0 : \u2191T0 \u2286 T\n\u22a2 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})" }, { "tactic": "simpa using h (T0 \u222a {Formula.not \u03c6})\n (by\n simp only [Finset.coe_union, Finset.coe_singleton]\n exact Set.union_subset_union hT0 (Set.Subset.refl _))", "annotated_tactic": [ "simpa using h (T0 \u222a {Formula.not \u03c6})\n (by\n simp only [Finset.coe_union, Finset.coe_singleton]\n exact Set.union_subset_union hT0 (Set.Subset.refl _))", [ { "full_name": "FirstOrder.Language.Formula.not", "def_path": "Mathlib/ModelTheory/Syntax.lean", "def_pos": [1031, 25], "def_end_pos": [1031, 28] }, { "full_name": "Finset.coe_union", "def_path": "Mathlib/Data/Finset/Basic.lean", "def_pos": [1399, 9], "def_end_pos": [1399, 18] }, { "full_name": "Finset.coe_singleton", "def_path": "Mathlib/Data/Finset/Basic.lean", "def_pos": [725, 9], "def_end_pos": [725, 22] }, { "full_name": "Set.union_subset_union", "def_path": "Mathlib/Data/Set/Basic.lean", "def_pos": [846, 9], "def_end_pos": [846, 27] }, { "full_name": "Set.Subset.refl", "def_path": "Mathlib/Data/Set/Basic.lean", "def_pos": [354, 9], "def_end_pos": [354, 20] } ] ], "state_before": "case mp\nL : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\nh : \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0\nT0 : Finset (Sentence L)\nhT0 : \u2191T0 \u2286 T\n\u22a2 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})", "state_after": "no goals" }, { "tactic": "simp only [Finset.coe_union, Finset.coe_singleton]", "annotated_tactic": [ "simp only [Finset.coe_union, Finset.coe_singleton]", [ { "full_name": "Finset.coe_union", "def_path": "Mathlib/Data/Finset/Basic.lean", "def_pos": [1399, 9], "def_end_pos": [1399, 18] }, { "full_name": "Finset.coe_singleton", "def_path": "Mathlib/Data/Finset/Basic.lean", "def_pos": [725, 9], "def_end_pos": [725, 22] } ] ], "state_before": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\nh : \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0\nT0 : Finset (Sentence L)\nhT0 : \u2191T0 \u2286 T\n\u22a2 \u2191(T0 \u222a {Formula.not \u03c6}) \u2286 T \u222a {Formula.not \u03c6}", "state_after": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\nh : \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0\nT0 : Finset (Sentence L)\nhT0 : \u2191T0 \u2286 T\n\u22a2 \u2191T0 \u222a {Formula.not \u03c6} \u2286 T \u222a {Formula.not \u03c6}" }, { "tactic": "exact Set.union_subset_union hT0 (Set.Subset.refl _)", "annotated_tactic": [ "exact Set.union_subset_union hT0 (Set.Subset.refl _)", [ { "full_name": "Set.union_subset_union", "def_path": "Mathlib/Data/Set/Basic.lean", "def_pos": [846, 9], "def_end_pos": [846, 27] }, { "full_name": "Set.Subset.refl", "def_path": "Mathlib/Data/Set/Basic.lean", "def_pos": [354, 9], "def_end_pos": [354, 20] } ] ], "state_before": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\nh : \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0\nT0 : Finset (Sentence L)\nhT0 : \u2191T0 \u2286 T\n\u22a2 \u2191T0 \u222a {Formula.not \u03c6} \u2286 T \u222a {Formula.not \u03c6}", "state_after": "no goals" }, { "tactic": "intro h T0 hT0", "annotated_tactic": ["intro h T0 hT0", []], "state_before": "case mpr\nL : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\n\u22a2 (\u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u2192 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})) \u2192\n \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u222a {Formula.not \u03c6} \u2192 IsSatisfiable \u2191T0", "state_after": "case mpr\nL : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\nh : \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u2192 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})\nT0 : Finset (Sentence L)\nhT0 : \u2191T0 \u2286 T \u222a {Formula.not \u03c6}\n\u22a2 IsSatisfiable \u2191T0" }, { "tactic": "exact IsSatisfiable.mono (h (T0.erase (Formula.not \u03c6))\n (by simpa using hT0)) (by simp)", "annotated_tactic": [ "exact IsSatisfiable.mono (h (T0.erase (Formula.not \u03c6))\n (by simpa using hT0)) (by simp)", [ { "full_name": "FirstOrder.Language.Theory.IsSatisfiable.mono", "def_path": "Mathlib/ModelTheory/Satisfiability.lean", "def_pos": [80, 9], "def_end_pos": [80, 27] }, { "full_name": "FirstOrder.Language.Formula.not", "def_path": "Mathlib/ModelTheory/Syntax.lean", "def_pos": [1031, 25], "def_end_pos": [1031, 28] } ] ], "state_before": "case mpr\nL : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\nh : \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u2192 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})\nT0 : Finset (Sentence L)\nhT0 : \u2191T0 \u2286 T \u222a {Formula.not \u03c6}\n\u22a2 IsSatisfiable \u2191T0", "state_after": "no goals" }, { "tactic": "simpa using hT0", "annotated_tactic": ["simpa using hT0", []], "state_before": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\nh : \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u2192 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})\nT0 : Finset (Sentence L)\nhT0 : \u2191T0 \u2286 T \u222a {Formula.not \u03c6}\n\u22a2 \u2191(Finset.erase T0 (Formula.not \u03c6)) \u2286 T", "state_after": "no goals" }, { "tactic": "simp", "annotated_tactic": ["simp", []], "state_before": "L : Language\nT : Theory L\n\u03b1 : Type w\nn : \u2115\n\u03c6 : Sentence L\nthis : DecidableEq (Sentence L) := Classical.decEq (Sentence L)\nh : \u2200 (T0 : Finset (Sentence L)), \u2191T0 \u2286 T \u2192 IsSatisfiable (\u2191T0 \u222a {Formula.not \u03c6})\nT0 : Finset (Sentence L)\nhT0 : \u2191T0 \u2286 T \u222a {Formula.not \u03c6}\n\u22a2 \u2191T0 \u2286 \u2191(Finset.erase T0 (Formula.not \u03c6)) \u222a {Formula.not \u03c6}", "state_after": "no goals" } ] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Data/Polynomial/Laurent.lean", "full_name": "LaurentPolynomial.isUnit_T", "start": [284, 1], "end": [285, 25], "traced_tactics": [] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Data/Nat/PartENat.lean", "full_name": "PartENat.toWithTop_some", "start": [571, 1], "end": [572, 6], "traced_tactics": [] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Data/Finset/Pointwise.lean", "full_name": "Finset.coe_smul", "start": [1283, 1], "end": [1284, 19], "traced_tactics": [] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Topology/Homotopy/HomotopyGroup.lean", "full_name": "GenLoop.continuous_fromLoop", "start": [240, 1], "end": [244, 6], "traced_tactics": [] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Init/Data/Int/Basic.lean", "full_name": "Int.neg_eq_neg", "start": [77, 11], "end": [77, 80], "traced_tactics": [] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Data/Matrix/Block.lean", "full_name": "Matrix.blockDiagonal'_diagonal", "start": [718, 1], "end": [724, 15], "traced_tactics": [ { "tactic": "ext \u27e8i, k\u27e9 \u27e8j, k'\u27e9", "annotated_tactic": ["ext \u27e8i, k\u27e9 \u27e8j, k'\u27e9", []], "state_before": "l : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\np : Type u_5\nq : Type u_6\nm' : o \u2192 Type u_7\nn' : o \u2192 Type u_8\np' : o \u2192 Type u_9\nR : Type u_10\nS : Type u_11\n\u03b1 : Type u_12\n\u03b2 : Type u_13\ninst\u271d\u00b3 : DecidableEq o\ninst\u271d\u00b2 : Zero \u03b1\ninst\u271d\u00b9 : Zero \u03b2\ninst\u271d : (i : o) \u2192 DecidableEq (m' i)\nd : (i : o) \u2192 m' i \u2192 \u03b1\n\u22a2 (blockDiagonal' fun k => diagonal (d k)) = diagonal fun ik => d ik.fst ik.snd", "state_after": "case a.mk.h.mk\nl : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\np : Type u_5\nq : Type u_6\nm' : o \u2192 Type u_7\nn' : o \u2192 Type u_8\np' : o \u2192 Type u_9\nR : Type u_10\nS : Type u_11\n\u03b1 : Type u_12\n\u03b2 : Type u_13\ninst\u271d\u00b3 : DecidableEq o\ninst\u271d\u00b2 : Zero \u03b1\ninst\u271d\u00b9 : Zero \u03b2\ninst\u271d : (i : o) \u2192 DecidableEq (m' i)\nd : (i : o) \u2192 m' i \u2192 \u03b1\ni : o\nk : m' i\nj : o\nk' : m' j\n\u22a2 blockDiagonal' (fun k => diagonal (d k)) { fst := i, snd := k } { fst := j, snd := k' } =\n diagonal (fun ik => d ik.fst ik.snd) { fst := i, snd := k } { fst := j, snd := k' }" }, { "tactic": "simp only [blockDiagonal'_apply, diagonal]", "annotated_tactic": [ "simp only [blockDiagonal'_apply, diagonal]", [ { "full_name": "Matrix.blockDiagonal'_apply", "def_path": "Mathlib/Data/Matrix/Block.lean", "def_pos": [666, 9], "def_end_pos": [666, 29] }, { "full_name": "Matrix.diagonal", "def_path": "Mathlib/Data/Matrix/Basic.lean", "def_pos": [420, 5], "def_end_pos": [420, 13] } ] ], "state_before": "case a.mk.h.mk\nl : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\np : Type u_5\nq : Type u_6\nm' : o \u2192 Type u_7\nn' : o \u2192 Type u_8\np' : o \u2192 Type u_9\nR : Type u_10\nS : Type u_11\n\u03b1 : Type u_12\n\u03b2 : Type u_13\ninst\u271d\u00b3 : DecidableEq o\ninst\u271d\u00b2 : Zero \u03b1\ninst\u271d\u00b9 : Zero \u03b2\ninst\u271d : (i : o) \u2192 DecidableEq (m' i)\nd : (i : o) \u2192 m' i \u2192 \u03b1\ni : o\nk : m' i\nj : o\nk' : m' j\n\u22a2 blockDiagonal' (fun k => diagonal (d k)) { fst := i, snd := k } { fst := j, snd := k' } =\n diagonal (fun ik => d ik.fst ik.snd) { fst := i, snd := k } { fst := j, snd := k' }", "state_after": "case a.mk.h.mk\nl : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\np : Type u_5\nq : Type u_6\nm' : o \u2192 Type u_7\nn' : o \u2192 Type u_8\np' : o \u2192 Type u_9\nR : Type u_10\nS : Type u_11\n\u03b1 : Type u_12\n\u03b2 : Type u_13\ninst\u271d\u00b3 : DecidableEq o\ninst\u271d\u00b2 : Zero \u03b1\ninst\u271d\u00b9 : Zero \u03b2\ninst\u271d : (i : o) \u2192 DecidableEq (m' i)\nd : (i : o) \u2192 m' i \u2192 \u03b1\ni : o\nk : m' i\nj : o\nk' : m' j\n\u22a2 (if h : i = j then\n \u2191of (fun i_1 j => if i_1 = j then d i i_1 else 0) k\n (cast (_ : m' { fst := j, snd := k' }.fst = m' { fst := i, snd := k }.fst) k')\n else 0) =\n \u2191of (fun i j => if i = j then d i.fst i.snd else 0) { fst := i, snd := k } { fst := j, snd := k' }" }, { "tactic": "obtain rfl | hij := Decidable.eq_or_ne i j", "annotated_tactic": [ "obtain rfl | hij := Decidable.eq_or_ne i j", [ { "full_name": "Decidable.eq_or_ne", "def_path": "Mathlib/Logic/Basic.lean", "def_pos": [203, 9], "def_end_pos": [203, 27] } ] ], "state_before": "case a.mk.h.mk\nl : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\np : Type u_5\nq : Type u_6\nm' : o \u2192 Type u_7\nn' : o \u2192 Type u_8\np' : o \u2192 Type u_9\nR : Type u_10\nS : Type u_11\n\u03b1 : Type u_12\n\u03b2 : Type u_13\ninst\u271d\u00b3 : DecidableEq o\ninst\u271d\u00b2 : Zero \u03b1\ninst\u271d\u00b9 : Zero \u03b2\ninst\u271d : (i : o) \u2192 DecidableEq (m' i)\nd : (i : o) \u2192 m' i \u2192 \u03b1\ni : o\nk : m' i\nj : o\nk' : m' j\n\u22a2 (if h : i = j then\n \u2191of (fun i_1 j => if i_1 = j then d i i_1 else 0) k\n (cast (_ : m' { fst := j, snd := k' }.fst = m' { fst := i, snd := k }.fst) k')\n else 0) =\n \u2191of (fun i j => if i = j then d i.fst i.snd else 0) { fst := i, snd := k } { fst := j, snd := k' }", "state_after": "case a.mk.h.mk.inl\nl : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\np : Type u_5\nq : Type u_6\nm' : o \u2192 Type u_7\nn' : o \u2192 Type u_8\np' : o \u2192 Type u_9\nR : Type u_10\nS : Type u_11\n\u03b1 : Type u_12\n\u03b2 : Type u_13\ninst\u271d\u00b3 : DecidableEq o\ninst\u271d\u00b2 : Zero \u03b1\ninst\u271d\u00b9 : Zero \u03b2\ninst\u271d : (i : o) \u2192 DecidableEq (m' i)\nd : (i : o) \u2192 m' i \u2192 \u03b1\ni : o\nk k' : m' i\n\u22a2 (if h : i = i then\n \u2191of (fun i_1 j => if i_1 = j then d i i_1 else 0) k\n (cast (_ : m' { fst := i, snd := k' }.fst = m' { fst := i, snd := k }.fst) k')\n else 0) =\n \u2191of (fun i j => if i = j then d i.fst i.snd else 0) { fst := i, snd := k } { fst := i, snd := k' }\n\ncase a.mk.h.mk.inr\nl : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\np : Type u_5\nq : Type u_6\nm' : o \u2192 Type u_7\nn' : o \u2192 Type u_8\np' : o \u2192 Type u_9\nR : Type u_10\nS : Type u_11\n\u03b1 : Type u_12\n\u03b2 : Type u_13\ninst\u271d\u00b3 : DecidableEq o\ninst\u271d\u00b2 : Zero \u03b1\ninst\u271d\u00b9 : Zero \u03b2\ninst\u271d : (i : o) \u2192 DecidableEq (m' i)\nd : (i : o) \u2192 m' i \u2192 \u03b1\ni : o\nk : m' i\nj : o\nk' : m' j\nhij : i \u2260 j\n\u22a2 (if h : i = j then\n \u2191of (fun i_1 j => if i_1 = j then d i i_1 else 0) k\n (cast (_ : m' { fst := j, snd := k' }.fst = m' { fst := i, snd := k }.fst) k')\n else 0) =\n \u2191of (fun i j => if i = j then d i.fst i.snd else 0) { fst := i, snd := k } { fst := j, snd := k' }" }, { "tactic": "simp", "annotated_tactic": ["simp", []], "state_before": "case a.mk.h.mk.inl\nl : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\np : Type u_5\nq : Type u_6\nm' : o \u2192 Type u_7\nn' : o \u2192 Type u_8\np' : o \u2192 Type u_9\nR : Type u_10\nS : Type u_11\n\u03b1 : Type u_12\n\u03b2 : Type u_13\ninst\u271d\u00b3 : DecidableEq o\ninst\u271d\u00b2 : Zero \u03b1\ninst\u271d\u00b9 : Zero \u03b2\ninst\u271d : (i : o) \u2192 DecidableEq (m' i)\nd : (i : o) \u2192 m' i \u2192 \u03b1\ni : o\nk k' : m' i\n\u22a2 (if h : i = i then\n \u2191of (fun i_1 j => if i_1 = j then d i i_1 else 0) k\n (cast (_ : m' { fst := i, snd := k' }.fst = m' { fst := i, snd := k }.fst) k')\n else 0) =\n \u2191of (fun i j => if i = j then d i.fst i.snd else 0) { fst := i, snd := k } { fst := i, snd := k' }", "state_after": "no goals" }, { "tactic": "simp [hij]", "annotated_tactic": ["simp [hij]", []], "state_before": "case a.mk.h.mk.inr\nl : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\np : Type u_5\nq : Type u_6\nm' : o \u2192 Type u_7\nn' : o \u2192 Type u_8\np' : o \u2192 Type u_9\nR : Type u_10\nS : Type u_11\n\u03b1 : Type u_12\n\u03b2 : Type u_13\ninst\u271d\u00b3 : DecidableEq o\ninst\u271d\u00b2 : Zero \u03b1\ninst\u271d\u00b9 : Zero \u03b2\ninst\u271d : (i : o) \u2192 DecidableEq (m' i)\nd : (i : o) \u2192 m' i \u2192 \u03b1\ni : o\nk : m' i\nj : o\nk' : m' j\nhij : i \u2260 j\n\u22a2 (if h : i = j then\n \u2191of (fun i_1 j => if i_1 = j then d i i_1 else 0) k\n (cast (_ : m' { fst := j, snd := k' }.fst = m' { fst := i, snd := k }.fst) k')\n else 0) =\n \u2191of (fun i j => if i = j then d i.fst i.snd else 0) { fst := i, snd := k } { fst := j, snd := k' }", "state_after": "no goals" } ] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Data/Polynomial/Degree/Definitions.lean", "full_name": "Polynomial.degree_sum_fin_lt", "start": [1180, 1], "end": [1184, 75], "traced_tactics": [] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Data/Complex/Exponential.lean", "full_name": "Real.exp_zero", "start": [1135, 1], "end": [1135, 51], "traced_tactics": [ { "tactic": "simp [Real.exp]", "annotated_tactic": [ "simp [Real.exp]", [ { "full_name": "Real.exp", "def_path": "Mathlib/Data/Complex/Exponential.lean", "def_pos": [434, 12], "def_end_pos": [434, 15] } ] ], "state_before": "x y : \u211d\n\u22a2 rexp 0 = 1", "state_after": "no goals" } ] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Combinatorics/SimpleGraph/Connectivity.lean", "full_name": "SimpleGraph.Walk.edges_bypass_subset", "start": [1508, 1], "end": [1509, 42], "traced_tactics": [] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/AlgebraicGeometry/PrimeSpectrum/Basic.lean", "full_name": "PrimeSpectrum.closedEmbedding_comap_of_surjective", "start": [739, 1], "end": [742, 64], "traced_tactics": [] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/LinearAlgebra/Matrix/Transvection.lean", "full_name": "Matrix.Pivot.isTwoBlockDiagonal_listTransvecCol_mul_mul_listTransvecRow", "start": [521, 1], "end": [530, 83], "traced_tactics": [ { "tactic": "constructor", "annotated_tactic": ["constructor", []], "state_before": "n : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\n\u22a2 IsTwoBlockDiagonal (List.prod (listTransvecCol M) * M * List.prod (listTransvecRow M))", "state_after": "case left\nn : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\n\u22a2 toBlocks\u2081\u2082 (List.prod (listTransvecCol M) * M * List.prod (listTransvecRow M)) = 0\n\ncase right\nn : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\n\u22a2 toBlocks\u2082\u2081 (List.prod (listTransvecCol M) * M * List.prod (listTransvecRow M)) = 0" }, { "tactic": "ext i j", "annotated_tactic": ["ext i j", []], "state_before": "case left\nn : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\n\u22a2 toBlocks\u2081\u2082 (List.prod (listTransvecCol M) * M * List.prod (listTransvecRow M)) = 0", "state_after": "case left.a.h\nn : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\ni : Fin r\nj : Unit\n\u22a2 toBlocks\u2081\u2082 (List.prod (listTransvecCol M) * M * List.prod (listTransvecRow M)) i j = OfNat.ofNat 0 i j" }, { "tactic": "have : j = unit := by simp only [eq_iff_true_of_subsingleton]", "annotated_tactic": [ "have : j = unit := by simp only [eq_iff_true_of_subsingleton]", [ { "full_name": "Unit.unit", "def_path": "lake-packages/lean4/src/lean/Init/Prelude.lean", "def_pos": [135, 25], "def_end_pos": [135, 34] }, { "full_name": "eq_iff_true_of_subsingleton", "def_path": "lake-packages/std/Std/Logic.lean", "def_pos": [790, 9], "def_end_pos": [790, 36] } ] ], "state_before": "case left.a.h\nn : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\ni : Fin r\nj : Unit\n\u22a2 toBlocks\u2081\u2082 (List.prod (listTransvecCol M) * M * List.prod (listTransvecRow M)) i j = OfNat.ofNat 0 i j", "state_after": "case left.a.h\nn : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\ni : Fin r\nj : Unit\nthis : j = ()\n\u22a2 toBlocks\u2081\u2082 (List.prod (listTransvecCol M) * M * List.prod (listTransvecRow M)) i j = OfNat.ofNat 0 i j" }, { "tactic": "simp [toBlocks\u2081\u2082, this, listTransvecCol_mul_mul_listTransvecRow_last_row M hM]", "annotated_tactic": [ "simp [toBlocks\u2081\u2082, this, listTransvecCol_mul_mul_listTransvecRow_last_row M hM]", [ { "full_name": "Matrix.toBlocks\u2081\u2082", "def_path": "Mathlib/Data/Matrix/Block.lean", "def_pos": [82, 5], "def_end_pos": [82, 15] }, { "full_name": "Matrix.Pivot.listTransvecCol_mul_mul_listTransvecRow_last_row", "def_path": "Mathlib/LinearAlgebra/Matrix/Transvection.lean", "def_pos": [509, 9], "def_end_pos": [509, 57] } ] ], "state_before": "case left.a.h\nn : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\ni : Fin r\nj : Unit\nthis : j = ()\n\u22a2 toBlocks\u2081\u2082 (List.prod (listTransvecCol M) * M * List.prod (listTransvecRow M)) i j = OfNat.ofNat 0 i j", "state_after": "no goals" }, { "tactic": "simp only [eq_iff_true_of_subsingleton]", "annotated_tactic": [ "simp only [eq_iff_true_of_subsingleton]", [ { "full_name": "eq_iff_true_of_subsingleton", "def_path": "lake-packages/std/Std/Logic.lean", "def_pos": [790, 9], "def_end_pos": [790, 36] } ] ], "state_before": "n : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\ni : Fin r\nj : Unit\n\u22a2 j = ()", "state_after": "no goals" }, { "tactic": "ext i j", "annotated_tactic": ["ext i j", []], "state_before": "case right\nn : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\n\u22a2 toBlocks\u2082\u2081 (List.prod (listTransvecCol M) * M * List.prod (listTransvecRow M)) = 0", "state_after": "case right.a.h\nn : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\ni : Unit\nj : Fin r\n\u22a2 toBlocks\u2082\u2081 (List.prod (listTransvecCol M) * M * List.prod (listTransvecRow M)) i j = OfNat.ofNat 0 i j" }, { "tactic": "have : i = unit := by simp only [eq_iff_true_of_subsingleton]", "annotated_tactic": [ "have : i = unit := by simp only [eq_iff_true_of_subsingleton]", [ { "full_name": "Unit.unit", "def_path": "lake-packages/lean4/src/lean/Init/Prelude.lean", "def_pos": [135, 25], "def_end_pos": [135, 34] }, { "full_name": "eq_iff_true_of_subsingleton", "def_path": "lake-packages/std/Std/Logic.lean", "def_pos": [790, 9], "def_end_pos": [790, 36] } ] ], "state_before": "case right.a.h\nn : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\ni : Unit\nj : Fin r\n\u22a2 toBlocks\u2082\u2081 (List.prod (listTransvecCol M) * M * List.prod (listTransvecRow M)) i j = OfNat.ofNat 0 i j", "state_after": "case right.a.h\nn : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\ni : Unit\nj : Fin r\nthis : i = ()\n\u22a2 toBlocks\u2082\u2081 (List.prod (listTransvecCol M) * M * List.prod (listTransvecRow M)) i j = OfNat.ofNat 0 i j" }, { "tactic": "simp [toBlocks\u2082\u2081, this, listTransvecCol_mul_mul_listTransvecRow_last_col M hM]", "annotated_tactic": [ "simp [toBlocks\u2082\u2081, this, listTransvecCol_mul_mul_listTransvecRow_last_col M hM]", [ { "full_name": "Matrix.toBlocks\u2082\u2081", "def_path": "Mathlib/Data/Matrix/Block.lean", "def_pos": [88, 5], "def_end_pos": [88, 15] }, { "full_name": "Matrix.Pivot.listTransvecCol_mul_mul_listTransvecRow_last_col", "def_path": "Mathlib/LinearAlgebra/Matrix/Transvection.lean", "def_pos": [497, 9], "def_end_pos": [497, 57] } ] ], "state_before": "case right.a.h\nn : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\ni : Unit\nj : Fin r\nthis : i = ()\n\u22a2 toBlocks\u2082\u2081 (List.prod (listTransvecCol M) * M * List.prod (listTransvecRow M)) i j = OfNat.ofNat 0 i j", "state_after": "no goals" }, { "tactic": "simp only [eq_iff_true_of_subsingleton]", "annotated_tactic": [ "simp only [eq_iff_true_of_subsingleton]", [ { "full_name": "eq_iff_true_of_subsingleton", "def_path": "lake-packages/std/Std/Logic.lean", "def_pos": [790, 9], "def_end_pos": [790, 36] } ] ], "state_before": "n : Type u_1\np : Type u_2\nR : Type u\u2082\n\ud835\udd5c : Type u_3\ninst\u271d\u00b3 : Field \ud835\udd5c\ninst\u271d\u00b2 : DecidableEq n\ninst\u271d\u00b9 : DecidableEq p\ninst\u271d : CommRing R\nr : \u2115\nM : Matrix (Fin r \u2295 Unit) (Fin r \u2295 Unit) \ud835\udd5c\nhM : M (inr ()) (inr ()) \u2260 0\ni : Unit\nj : Fin r\n\u22a2 i = ()", "state_after": "no goals" } ] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/MeasureTheory/Covering/Differentiation.lean", "full_name": "VitaliFamily.ae_tendsto_measure_inter_div", "start": [752, 1], "end": [770, 55], "traced_tactics": [ { "tactic": "let t := toMeasurable \u03bc s", "annotated_tactic": [ "let t := toMeasurable \u03bc s", [ { "full_name": "MeasureTheory.toMeasurable", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean", "def_pos": [626, 17], "def_end_pos": [626, 29] } ] ], "state_before": "\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\n\u22a2 \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (s \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)", "state_after": "\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\n\u22a2 \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (s \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)" }, { "tactic": "have A :\n \u2200\u1d50 x \u2202\u03bc.restrict s,\n Tendsto (fun a => \u03bc (t \u2229 a) / \u03bc a) (v.filterAt x) (\ud835\udcdd (t.indicator 1 x)) := by\n apply ae_mono restrict_le_self\n apply ae_tendsto_measure_inter_div_of_measurableSet\n exact measurableSet_toMeasurable _ _", "annotated_tactic": [ "have A :\n \u2200\u1d50 x \u2202\u03bc.restrict s,\n Tendsto (fun a => \u03bc (t \u2229 a) / \u03bc a) (v.filterAt x) (\ud835\udcdd (t.indicator 1 x)) := by\n apply ae_mono restrict_le_self\n apply ae_tendsto_measure_inter_div_of_measurableSet\n exact measurableSet_toMeasurable _ _", [ { "full_name": "Filter.Tendsto", "def_path": "Mathlib/Order/Filter/Basic.lean", "def_pos": [2939, 5], "def_end_pos": [2939, 12] }, { "full_name": "MeasureTheory.ae_mono", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpace.lean", "def_pos": [2456, 9], "def_end_pos": [2456, 16] }, { "full_name": "MeasureTheory.Measure.restrict_le_self", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpace.lean", "def_pos": [1578, 9], "def_end_pos": [1578, 25] }, { "full_name": "VitaliFamily.ae_tendsto_measure_inter_div_of_measurableSet", "def_path": "Mathlib/MeasureTheory/Covering/Differentiation.lean", "def_pos": [739, 9], "def_end_pos": [739, 54] }, { "full_name": "MeasureTheory.measurableSet_toMeasurable", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean", "def_pos": [645, 9], "def_end_pos": [645, 35] } ] ], "state_before": "\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\n\u22a2 \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (s \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)", "state_after": "\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\n\u22a2 \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (s \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)" }, { "tactic": "have B : \u2200\u1d50 x \u2202\u03bc.restrict s, t.indicator 1 x = (1 : \u211d\u22650\u221e) := by\n refine' ae_restrict_of_ae_restrict_of_subset (subset_toMeasurable \u03bc s) _\n filter_upwards [ae_restrict_mem (measurableSet_toMeasurable \u03bc s)] with _ hx\n simp only [hx, Pi.one_apply, indicator_of_mem]", "annotated_tactic": [ "have B : \u2200\u1d50 x \u2202\u03bc.restrict s, t.indicator 1 x = (1 : \u211d\u22650\u221e) := by\n refine' ae_restrict_of_ae_restrict_of_subset (subset_toMeasurable \u03bc s) _\n filter_upwards [ae_restrict_mem (measurableSet_toMeasurable \u03bc s)] with _ hx\n simp only [hx, Pi.one_apply, indicator_of_mem]", [ { "full_name": "MeasureTheory.ae_restrict_of_ae_restrict_of_subset", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpace.lean", "def_pos": [2606, 9], "def_end_pos": [2606, 45] }, { "full_name": "MeasureTheory.subset_toMeasurable", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean", "def_pos": [633, 9], "def_end_pos": [633, 28] }, { "full_name": "MeasureTheory.ae_restrict_mem", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpace.lean", "def_pos": [2586, 9], "def_end_pos": [2586, 24] }, { "full_name": "MeasureTheory.measurableSet_toMeasurable", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean", "def_pos": [645, 9], "def_end_pos": [645, 35] }, { "full_name": "Pi.one_apply", "def_path": "Mathlib/Data/Pi/Algebra.lean", "def_pos": [47, 9], "def_end_pos": [47, 18] }, { "full_name": "Set.indicator_of_mem", "def_path": "Mathlib/Algebra/IndicatorFunction.lean", "def_pos": [67, 3], "def_end_pos": [67, 14] } ] ], "state_before": "\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\n\u22a2 \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (s \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)", "state_after": "\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nB : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, indicator t 1 x = 1\n\u22a2 \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (s \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)" }, { "tactic": "filter_upwards [A, B] with x hx h'x", "annotated_tactic": ["filter_upwards [A, B] with x hx h'x", []], "state_before": "\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nB : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, indicator t 1 x = 1\n\u22a2 \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (s \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)", "state_after": "case h\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nB : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, indicator t 1 x = 1\nx : \u03b1\nhx : Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nh'x : indicator t 1 x = 1\n\u22a2 Tendsto (fun a => \u2191\u2191\u03bc (s \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)" }, { "tactic": "rw [h'x] at hx", "annotated_tactic": ["rw [h'x] at hx", []], "state_before": "case h\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nB : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, indicator t 1 x = 1\nx : \u03b1\nhx : Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nh'x : indicator t 1 x = 1\n\u22a2 Tendsto (fun a => \u2191\u2191\u03bc (s \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)", "state_after": "case h\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nB : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, indicator t 1 x = 1\nx : \u03b1\nhx : Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)\nh'x : indicator t 1 x = 1\n\u22a2 Tendsto (fun a => \u2191\u2191\u03bc (s \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)" }, { "tactic": "apply hx.congr' _", "annotated_tactic": ["apply hx.congr' _", []], "state_before": "case h\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nB : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, indicator t 1 x = 1\nx : \u03b1\nhx : Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)\nh'x : indicator t 1 x = 1\n\u22a2 Tendsto (fun a => \u2191\u2191\u03bc (s \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)", "state_after": "\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nB : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, indicator t 1 x = 1\nx : \u03b1\nhx : Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)\nh'x : indicator t 1 x = 1\n\u22a2 (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) =\u1da0[filterAt v x] fun a => \u2191\u2191\u03bc (s \u2229 a) / \u2191\u2191\u03bc a" }, { "tactic": "filter_upwards [v.eventually_filterAt_measurableSet x] with _ ha", "annotated_tactic": [ "filter_upwards [v.eventually_filterAt_measurableSet x] with _ ha", [] ], "state_before": "\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nB : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, indicator t 1 x = 1\nx : \u03b1\nhx : Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)\nh'x : indicator t 1 x = 1\n\u22a2 (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) =\u1da0[filterAt v x] fun a => \u2191\u2191\u03bc (s \u2229 a) / \u2191\u2191\u03bc a", "state_after": "case h\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nB : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, indicator t 1 x = 1\nx : \u03b1\nhx : Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)\nh'x : indicator t 1 x = 1\na\u271d : Set \u03b1\nha : MeasurableSet a\u271d\n\u22a2 \u2191\u2191\u03bc (t \u2229 a\u271d) / \u2191\u2191\u03bc a\u271d = \u2191\u2191\u03bc (s \u2229 a\u271d) / \u2191\u2191\u03bc a\u271d" }, { "tactic": "congr 1", "annotated_tactic": ["congr 1", []], "state_before": "case h\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nB : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, indicator t 1 x = 1\nx : \u03b1\nhx : Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)\nh'x : indicator t 1 x = 1\na\u271d : Set \u03b1\nha : MeasurableSet a\u271d\n\u22a2 \u2191\u2191\u03bc (t \u2229 a\u271d) / \u2191\u2191\u03bc a\u271d = \u2191\u2191\u03bc (s \u2229 a\u271d) / \u2191\u2191\u03bc a\u271d", "state_after": "case h.e_a\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nB : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, indicator t 1 x = 1\nx : \u03b1\nhx : Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)\nh'x : indicator t 1 x = 1\na\u271d : Set \u03b1\nha : MeasurableSet a\u271d\n\u22a2 \u2191\u2191\u03bc (t \u2229 a\u271d) = \u2191\u2191\u03bc (s \u2229 a\u271d)" }, { "tactic": "exact measure_toMeasurable_inter_of_sigmaFinite ha _", "annotated_tactic": [ "exact measure_toMeasurable_inter_of_sigmaFinite ha _", [ { "full_name": "MeasureTheory.Measure.measure_toMeasurable_inter_of_sigmaFinite", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpace.lean", "def_pos": [3608, 9], "def_end_pos": [3608, 50] } ] ], "state_before": "case h.e_a\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\nB : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, indicator t 1 x = 1\nx : \u03b1\nhx : Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd 1)\nh'x : indicator t 1 x = 1\na\u271d : Set \u03b1\nha : MeasurableSet a\u271d\n\u22a2 \u2191\u2191\u03bc (t \u2229 a\u271d) = \u2191\u2191\u03bc (s \u2229 a\u271d)", "state_after": "no goals" }, { "tactic": "apply ae_mono restrict_le_self", "annotated_tactic": [ "apply ae_mono restrict_le_self", [ { "full_name": "MeasureTheory.ae_mono", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpace.lean", "def_pos": [2456, 9], "def_end_pos": [2456, 16] }, { "full_name": "MeasureTheory.Measure.restrict_le_self", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpace.lean", "def_pos": [1578, 9], "def_end_pos": [1578, 25] } ] ], "state_before": "\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\n\u22a2 \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))", "state_after": "case a\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\n\u22a2 {x | (fun x => Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))) x} \u2208 ae \u03bc" }, { "tactic": "apply ae_tendsto_measure_inter_div_of_measurableSet", "annotated_tactic": [ "apply ae_tendsto_measure_inter_div_of_measurableSet", [ { "full_name": "VitaliFamily.ae_tendsto_measure_inter_div_of_measurableSet", "def_path": "Mathlib/MeasureTheory/Covering/Differentiation.lean", "def_pos": [739, 9], "def_end_pos": [739, 54] } ] ], "state_before": "case a\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\n\u22a2 {x | (fun x => Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))) x} \u2208 ae \u03bc", "state_after": "case a.hs\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\n\u22a2 MeasurableSet t" }, { "tactic": "exact measurableSet_toMeasurable _ _", "annotated_tactic": [ "exact measurableSet_toMeasurable _ _", [ { "full_name": "MeasureTheory.measurableSet_toMeasurable", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean", "def_pos": [645, 9], "def_end_pos": [645, 35] } ] ], "state_before": "case a.hs\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\n\u22a2 MeasurableSet t", "state_after": "no goals" }, { "tactic": "refine' ae_restrict_of_ae_restrict_of_subset (subset_toMeasurable \u03bc s) _", "annotated_tactic": [ "refine' ae_restrict_of_ae_restrict_of_subset (subset_toMeasurable \u03bc s) _", [ { "full_name": "MeasureTheory.ae_restrict_of_ae_restrict_of_subset", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpace.lean", "def_pos": [2606, 9], "def_end_pos": [2606, 45] }, { "full_name": "MeasureTheory.subset_toMeasurable", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean", "def_pos": [633, 9], "def_end_pos": [633, 28] } ] ], "state_before": "\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\n\u22a2 \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, indicator t 1 x = 1", "state_after": "\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\n\u22a2 \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc (toMeasurable \u03bc s), indicator t 1 x = 1" }, { "tactic": "filter_upwards [ae_restrict_mem (measurableSet_toMeasurable \u03bc s)] with _ hx", "annotated_tactic": [ "filter_upwards [ae_restrict_mem (measurableSet_toMeasurable \u03bc s)] with _ hx", [ { "full_name": "MeasureTheory.ae_restrict_mem", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpace.lean", "def_pos": [2586, 9], "def_end_pos": [2586, 24] }, { "full_name": "MeasureTheory.measurableSet_toMeasurable", "def_path": "Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean", "def_pos": [645, 9], "def_end_pos": [645, 35] } ] ], "state_before": "\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\n\u22a2 \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc (toMeasurable \u03bc s), indicator t 1 x = 1", "state_after": "case h\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\na\u271d : \u03b1\nhx : a\u271d \u2208 toMeasurable \u03bc s\n\u22a2 indicator t 1 a\u271d = 1" }, { "tactic": "simp only [hx, Pi.one_apply, indicator_of_mem]", "annotated_tactic": [ "simp only [hx, Pi.one_apply, indicator_of_mem]", [ { "full_name": "Pi.one_apply", "def_path": "Mathlib/Data/Pi/Algebra.lean", "def_pos": [47, 9], "def_end_pos": [47, 18] }, { "full_name": "Set.indicator_of_mem", "def_path": "Mathlib/Algebra/IndicatorFunction.lean", "def_pos": [67, 3], "def_end_pos": [67, 14] } ] ], "state_before": "case h\n\u03b1 : Type u_1\ninst\u271d\u2075 : MetricSpace \u03b1\nm0 : MeasurableSpace \u03b1\n\u03bc : Measure \u03b1\nv : VitaliFamily \u03bc\nE : Type u_2\ninst\u271d\u2074 : NormedAddCommGroup E\ninst\u271d\u00b3 : SecondCountableTopology \u03b1\ninst\u271d\u00b2 : BorelSpace \u03b1\ninst\u271d\u00b9 : IsLocallyFiniteMeasure \u03bc\n\u03c1 : Measure \u03b1\ninst\u271d : IsLocallyFiniteMeasure \u03c1\ns : Set \u03b1\nt : Set \u03b1 := toMeasurable \u03bc s\nA : \u2200\u1d50 (x : \u03b1) \u2202Measure.restrict \u03bc s, Tendsto (fun a => \u2191\u2191\u03bc (t \u2229 a) / \u2191\u2191\u03bc a) (filterAt v x) (\ud835\udcdd (indicator t 1 x))\na\u271d : \u03b1\nhx : a\u271d \u2208 toMeasurable \u03bc s\n\u22a2 indicator t 1 a\u271d = 1", "state_after": "no goals" } ] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Order/Filter/Prod.lean", "full_name": "Filter.tendsto_fst", "start": [136, 1], "end": [137, 33], "traced_tactics": [] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Analysis/NormedSpace/Extr.lean", "full_name": "IsMaxOn.norm_add_self", "start": [62, 1], "end": [63, 30], "traced_tactics": [] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Analysis/SpecificLimits/Normed.lean", "full_name": "NormedRing.summable_geometric_of_norm_lt_1", "start": [457, 1], "end": [462, 33], "traced_tactics": [ { "tactic": "have h1 : Summable fun n : \u2115 \u21a6 \u2016x\u2016 ^ n := summable_geometric_of_lt_1 (norm_nonneg _) h", "annotated_tactic": [ "have h1 : Summable fun n : \u2115 \u21a6 \u2016x\u2016 ^ n := summable_geometric_of_lt_1 (norm_nonneg _) h", [ { "full_name": "Summable", "def_path": "Mathlib/Topology/Algebra/InfiniteSum/Basic.lean", "def_pos": [62, 5], "def_end_pos": [62, 13] }, { "full_name": "summable_geometric_of_lt_1", "def_path": "Mathlib/Analysis/SpecificLimits/Basic.lean", "def_pos": [215, 9], "def_end_pos": [215, 35] }, { "full_name": "norm_nonneg", "def_path": "Mathlib/Analysis/Normed/Group/Basic.lean", "def_pos": [500, 30], "def_end_pos": [500, 41] } ] ], "state_before": "\u03b1 : Type u_1\n\u03b2 : Type u_2\n\u03b9 : Type u_3\nR : Type u_4\ninst\u271d\u00b9 : NormedRing R\ninst\u271d : CompleteSpace R\nx : R\nh : \u2016x\u2016 < 1\n\u22a2 Summable fun n => x ^ n", "state_after": "\u03b1 : Type u_1\n\u03b2 : Type u_2\n\u03b9 : Type u_3\nR : Type u_4\ninst\u271d\u00b9 : NormedRing R\ninst\u271d : CompleteSpace R\nx : R\nh : \u2016x\u2016 < 1\nh1 : Summable fun n => \u2016x\u2016 ^ n\n\u22a2 Summable fun n => x ^ n" }, { "tactic": "refine' summable_of_norm_bounded_eventually _ h1 _", "annotated_tactic": [ "refine' summable_of_norm_bounded_eventually _ h1 _", [ { "full_name": "summable_of_norm_bounded_eventually", "def_path": "Mathlib/Analysis/Normed/Group/InfiniteSum.lean", "def_pos": [162, 9], "def_end_pos": [162, 44] } ] ], "state_before": "\u03b1 : Type u_1\n\u03b2 : Type u_2\n\u03b9 : Type u_3\nR : Type u_4\ninst\u271d\u00b9 : NormedRing R\ninst\u271d : CompleteSpace R\nx : R\nh : \u2016x\u2016 < 1\nh1 : Summable fun n => \u2016x\u2016 ^ n\n\u22a2 Summable fun n => x ^ n", "state_after": "\u03b1 : Type u_1\n\u03b2 : Type u_2\n\u03b9 : Type u_3\nR : Type u_4\ninst\u271d\u00b9 : NormedRing R\ninst\u271d : CompleteSpace R\nx : R\nh : \u2016x\u2016 < 1\nh1 : Summable fun n => \u2016x\u2016 ^ n\n\u22a2 \u2200\u1da0 (i : \u2115) in cofinite, \u2016x ^ i\u2016 \u2264 \u2016x\u2016 ^ i" }, { "tactic": "rw [Nat.cofinite_eq_atTop]", "annotated_tactic": [ "rw [Nat.cofinite_eq_atTop]", [ { "full_name": "Nat.cofinite_eq_atTop", "def_path": "Mathlib/Order/Filter/Cofinite.lean", "def_pos": [156, 9], "def_end_pos": [156, 30] } ] ], "state_before": "\u03b1 : Type u_1\n\u03b2 : Type u_2\n\u03b9 : Type u_3\nR : Type u_4\ninst\u271d\u00b9 : NormedRing R\ninst\u271d : CompleteSpace R\nx : R\nh : \u2016x\u2016 < 1\nh1 : Summable fun n => \u2016x\u2016 ^ n\n\u22a2 \u2200\u1da0 (i : \u2115) in cofinite, \u2016x ^ i\u2016 \u2264 \u2016x\u2016 ^ i", "state_after": "\u03b1 : Type u_1\n\u03b2 : Type u_2\n\u03b9 : Type u_3\nR : Type u_4\ninst\u271d\u00b9 : NormedRing R\ninst\u271d : CompleteSpace R\nx : R\nh : \u2016x\u2016 < 1\nh1 : Summable fun n => \u2016x\u2016 ^ n\n\u22a2 \u2200\u1da0 (i : \u2115) in atTop, \u2016x ^ i\u2016 \u2264 \u2016x\u2016 ^ i" }, { "tactic": "exact eventually_norm_pow_le x", "annotated_tactic": [ "exact eventually_norm_pow_le x", [ { "full_name": "eventually_norm_pow_le", "def_path": "Mathlib/Analysis/Normed/Field/Basic.lean", "def_pos": [383, 9], "def_end_pos": [383, 31] } ] ], "state_before": "\u03b1 : Type u_1\n\u03b2 : Type u_2\n\u03b9 : Type u_3\nR : Type u_4\ninst\u271d\u00b9 : NormedRing R\ninst\u271d : CompleteSpace R\nx : R\nh : \u2016x\u2016 < 1\nh1 : Summable fun n => \u2016x\u2016 ^ n\n\u22a2 \u2200\u1da0 (i : \u2115) in atTop, \u2016x ^ i\u2016 \u2264 \u2016x\u2016 ^ i", "state_after": "no goals" } ] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/MeasureTheory/Measure/Dirac.lean", "full_name": "MeasureTheory.Measure.restrict_singleton", "start": [67, 1], "end": [73, 13], "traced_tactics": [ { "tactic": "ext1 s hs", "annotated_tactic": ["ext1 s hs", []], "state_before": "\u03b1 : Type u_1\n\u03b2 : Type ?u.7488\ninst\u271d\u00b9 : MeasurableSpace \u03b1\ninst\u271d : MeasurableSpace \u03b2\ns : Set \u03b1\n\u03bc : Measure \u03b1\na : \u03b1\n\u22a2 restrict \u03bc {a} = \u2191\u2191\u03bc {a} \u2022 dirac a", "state_after": "case h\n\u03b1 : Type u_1\n\u03b2 : Type ?u.7488\ninst\u271d\u00b9 : MeasurableSpace \u03b1\ninst\u271d : MeasurableSpace \u03b2\ns\u271d : Set \u03b1\n\u03bc : Measure \u03b1\na : \u03b1\ns : Set \u03b1\nhs : MeasurableSet s\n\u22a2 \u2191\u2191(restrict \u03bc {a}) s = \u2191\u2191(\u2191\u2191\u03bc {a} \u2022 dirac a) s" }, { "tactic": "by_cases ha : a \u2208 s", "annotated_tactic": ["by_cases ha : a \u2208 s", []], "state_before": "case h\n\u03b1 : Type u_1\n\u03b2 : Type ?u.7488\ninst\u271d\u00b9 : MeasurableSpace \u03b1\ninst\u271d : MeasurableSpace \u03b2\ns\u271d : Set \u03b1\n\u03bc : Measure \u03b1\na : \u03b1\ns : Set \u03b1\nhs : MeasurableSet s\n\u22a2 \u2191\u2191(restrict \u03bc {a}) s = \u2191\u2191(\u2191\u2191\u03bc {a} \u2022 dirac a) s", "state_after": "case pos\n\u03b1 : Type u_1\n\u03b2 : Type ?u.7488\ninst\u271d\u00b9 : MeasurableSpace \u03b1\ninst\u271d : MeasurableSpace \u03b2\ns\u271d : Set \u03b1\n\u03bc : Measure \u03b1\na : \u03b1\ns : Set \u03b1\nhs : MeasurableSet s\nha : a \u2208 s\n\u22a2 \u2191\u2191(restrict \u03bc {a}) s = \u2191\u2191(\u2191\u2191\u03bc {a} \u2022 dirac a) s\n\ncase neg\n\u03b1 : Type u_1\n\u03b2 : Type ?u.7488\ninst\u271d\u00b9 : MeasurableSpace \u03b1\ninst\u271d : MeasurableSpace \u03b2\ns\u271d : Set \u03b1\n\u03bc : Measure \u03b1\na : \u03b1\ns : Set \u03b1\nhs : MeasurableSet s\nha : \u00aca \u2208 s\n\u22a2 \u2191\u2191(restrict \u03bc {a}) s = \u2191\u2191(\u2191\u2191\u03bc {a} \u2022 dirac a) s" }, { "tactic": "have : s \u2229 {a} = {a} := by simpa", "annotated_tactic": ["have : s \u2229 {a} = {a} := by simpa", []], "state_before": "case pos\n\u03b1 : Type u_1\n\u03b2 : Type ?u.7488\ninst\u271d\u00b9 : MeasurableSpace \u03b1\ninst\u271d : MeasurableSpace \u03b2\ns\u271d : Set \u03b1\n\u03bc : Measure \u03b1\na : \u03b1\ns : Set \u03b1\nhs : MeasurableSet s\nha : a \u2208 s\n\u22a2 \u2191\u2191(restrict \u03bc {a}) s = \u2191\u2191(\u2191\u2191\u03bc {a} \u2022 dirac a) s", "state_after": "case pos\n\u03b1 : Type u_1\n\u03b2 : Type ?u.7488\ninst\u271d\u00b9 : MeasurableSpace \u03b1\ninst\u271d : MeasurableSpace \u03b2\ns\u271d : Set \u03b1\n\u03bc : Measure \u03b1\na : \u03b1\ns : Set \u03b1\nhs : MeasurableSet s\nha : a \u2208 s\nthis : s \u2229 {a} = {a}\n\u22a2 \u2191\u2191(restrict \u03bc {a}) s = \u2191\u2191(\u2191\u2191\u03bc {a} \u2022 dirac a) s" }, { "tactic": "simp [*]", "annotated_tactic": ["simp [*]", []], "state_before": "case pos\n\u03b1 : Type u_1\n\u03b2 : Type ?u.7488\ninst\u271d\u00b9 : MeasurableSpace \u03b1\ninst\u271d : MeasurableSpace \u03b2\ns\u271d : Set \u03b1\n\u03bc : Measure \u03b1\na : \u03b1\ns : Set \u03b1\nhs : MeasurableSet s\nha : a \u2208 s\nthis : s \u2229 {a} = {a}\n\u22a2 \u2191\u2191(restrict \u03bc {a}) s = \u2191\u2191(\u2191\u2191\u03bc {a} \u2022 dirac a) s", "state_after": "no goals" }, { "tactic": "simpa", "annotated_tactic": ["simpa", []], "state_before": "\u03b1 : Type u_1\n\u03b2 : Type ?u.7488\ninst\u271d\u00b9 : MeasurableSpace \u03b1\ninst\u271d : MeasurableSpace \u03b2\ns\u271d : Set \u03b1\n\u03bc : Measure \u03b1\na : \u03b1\ns : Set \u03b1\nhs : MeasurableSet s\nha : a \u2208 s\n\u22a2 s \u2229 {a} = {a}", "state_after": "no goals" }, { "tactic": "have : s \u2229 {a} = \u2205 := inter_singleton_eq_empty.2 ha", "annotated_tactic": [ "have : s \u2229 {a} = \u2205 := inter_singleton_eq_empty.2 ha", [ { "full_name": "Set.inter_singleton_eq_empty", "def_path": "Mathlib/Data/Set/Basic.lean", "def_pos": [1367, 9], "def_end_pos": [1367, 33] } ] ], "state_before": "case neg\n\u03b1 : Type u_1\n\u03b2 : Type ?u.7488\ninst\u271d\u00b9 : MeasurableSpace \u03b1\ninst\u271d : MeasurableSpace \u03b2\ns\u271d : Set \u03b1\n\u03bc : Measure \u03b1\na : \u03b1\ns : Set \u03b1\nhs : MeasurableSet s\nha : \u00aca \u2208 s\n\u22a2 \u2191\u2191(restrict \u03bc {a}) s = \u2191\u2191(\u2191\u2191\u03bc {a} \u2022 dirac a) s", "state_after": "case neg\n\u03b1 : Type u_1\n\u03b2 : Type ?u.7488\ninst\u271d\u00b9 : MeasurableSpace \u03b1\ninst\u271d : MeasurableSpace \u03b2\ns\u271d : Set \u03b1\n\u03bc : Measure \u03b1\na : \u03b1\ns : Set \u03b1\nhs : MeasurableSet s\nha : \u00aca \u2208 s\nthis : s \u2229 {a} = \u2205\n\u22a2 \u2191\u2191(restrict \u03bc {a}) s = \u2191\u2191(\u2191\u2191\u03bc {a} \u2022 dirac a) s" }, { "tactic": "simp [*]", "annotated_tactic": ["simp [*]", []], "state_before": "case neg\n\u03b1 : Type u_1\n\u03b2 : Type ?u.7488\ninst\u271d\u00b9 : MeasurableSpace \u03b1\ninst\u271d : MeasurableSpace \u03b2\ns\u271d : Set \u03b1\n\u03bc : Measure \u03b1\na : \u03b1\ns : Set \u03b1\nhs : MeasurableSet s\nha : \u00aca \u2208 s\nthis : s \u2229 {a} = \u2205\n\u22a2 \u2191\u2191(restrict \u03bc {a}) s = \u2191\u2191(\u2191\u2191\u03bc {a} \u2022 dirac a) s", "state_after": "no goals" } ] }, { "url": "https://github.com/leanprover-community/mathlib4", "commit": "3ce43c18f614b76e161f911b75a3e1ef641620ff", "file_path": "Mathlib/Data/Rat/Cast/CharZero.lean", "full_name": "Rat.cast_sub", "start": [59, 1], "end": [60, 100], "traced_tactics": [] } ]