--- license: apache-2.0 pretty_name: HumanEvalPack language: - code --- ![Octopack](https://github.com/bigcode-project/octopack/blob/31f3320f098703c7910e43492c39366eeea68d83/banner.png?raw=true) # Dataset Card for HumanEvalPack ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** https://github.com/bigcode-project/octopack - **Paper:** WIP - **Point of Contact:** [Niklas Muennighoff](mailto:n.muennighoff@gmail.com) ### Dataset Summary > HumanEvalPack is ... > - **Languages:** Python, JavaScript, Java, Go, C++, Rust - **OctoPack🐙🎒:**
Data CommitPack 4TB of GitHub commits across 350 programming languages
Data CommitPackFT Filtered version of CommitPack for high-quality commit messages that resemble instructions
Model OctoCoder StarCoder (16B parameters) instruction tuned on CommitPackFT + OASST
Evaluation HumanEvalPack Extension of OpenAI's HumanEval to cover 3 scenarios across 6 languages
## Dataset Structure ### Data Instances An example looks as follows: ```json { "task_id": "Python/0", "prompt": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n \"\"\"\n", "declaration": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n", "canonical_solution": " for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n", "buggy_solution": " for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return False\n", "bug_type": "missing logic", "failure_symptoms": "incorrect output", "entry_point": "has_close_elements", "import": "" "test_setup": "" "test": "\n\n\n\n\ndef check(has_close_elements):\n assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False\n assert has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True\n assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True\n assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False\n\ncheck(has_close_elements)", "example_test": "def check(has_close_elements):\n assert has_close_elements([1.0, 2.0, 3.0], 0.5) == False\n assert has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) == True\ncheck(has_close_elements)\n", "signature": "has_close_elements(numbers: List[float], threshold: float) -> bool", "docstring": "Check if in given list of numbers, are any two numbers closer to each other than\ngiven threshold.\n>>> has_close_elements([1.0, 2.0, 3.0], 0.5)\nFalse\n>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\nTrue", "instruction": "Write a Python function `has_close_elements(numbers: List[float], threshold: float) -> bool` to solve the following problem:\nCheck if in given list of numbers, are any two numbers closer to each other than\ngiven threshold.\n>>> has_close_elements([1.0, 2.0, 3.0], 0.5)\nFalse\n>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\nTrue" } ``` ### Data Fields The data fields are the same among all splits: - `task_id`: task id (from 0 to 163) - `prompt`: the prompt for models relying on code continuation - `declaration`: the declaration of the function (same as prompt but without the docstring) - `canonical_solution`: the correct solution passing all unit tests for the problem - `buggy_solution`: same as `canonical_solution` but with a subtle human-written bug causing the unit tests to fail - `bug_type`: the type of the bug in `buggy_solution` (one of [`missing logic`, `excess logic`, `value misuse`, `operator misuse`, `variable misuse`, `function misuse`]) - `failure_symptoms`: the problem the bug causes (one of [`incorrect output`, `stackoverflow`, `infinite loop`]) - `entry_point`: the name of the function - 'import': imports necessary for the solution (only present for Go) - 'test_setup': imports necessary for the test execution (only present for Go) - `test`: the unit tests for the problem - `example_test`: additional unit tests different from `test` that could be e.g. provided to the model (these are not used in the paper) - `signature`: the signature of the function - `docstring`: the docstring describing the problem - `instruction`: an instruction for HumanEvalSynthesize in the form `Write a {language_name} function {signature} to solve the following problem:\n{docstring}` ### Data Splits ## Additional Information ### Licensing Information Each sample has comes from a code repository with a permissive license. The license is provided by the `license` field for each sample. ### Citation Information ```bibtex ```