--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 1929035 num_examples: 5000 - name: validation num_bytes: 1926717 num_examples: 5000 - name: test num_bytes: 1926477 num_examples: 5000 download_size: 5840409 dataset_size: 5782229 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # Random ASCII Dataset This dataset contains random sequences of ASCII characters, with "train," "validation," and "test" splits, designed to simulate text-like structures using all printable ASCII characters. Each sequence consists of pseudo-randomly generated "words" of various lengths, separated by spaces to mimic natural language text. ## Dataset Details - **Splits**: Train, Validation, and Test - **Number of sequences**: - Train: 5000 sequences - Validation: 5000 sequences - Test: 5000 sequences - **Sequence length**: 512 characters per sequence - **Character pool**: All printable ASCII characters, including letters, digits, punctuation, and whitespace. ## Sample Usage To load this dataset in Python, you can use the Hugging Face `datasets` library: ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("brando/random-ascii-dataset") # Access the train, validation, and test splits train_data = dataset["train"] val_data = dataset["validation"] test_data = dataset["test"] # Print a sample print(train_data[0]["text"]) ``` # Example Data Below are examples of random sequences generated in this dataset: ```python #Example 1: "!Q4$^V3w L@#12 Vd&$%4B+ (k#yFw! [7*9z" #Example 2: "T^&3xR f$xH&ty ^23M* qW@# Lm5&" #Example 3: "b7$W %&6Zn!!R xT&8N z#G m93T +%^0" ``` # License This dataset is released under the Apache License 2.0. You are free to use, modify, and distribute this dataset under the terms of the Apache License. # Citation ```bibtex @misc{miranda2021ultimateutils, title={Ultimate Utils - the Ultimate Utils Library for Machine Learning and Artificial Intelligence}, author={Brando Miranda}, year={2021}, url={https://github.com/brando90/ultimate-utils}, note={Available at: \url{https://www.ideals.illinois.edu/handle/2142/112797}}, abstract={Ultimate Utils is a comprehensive library providing utility functions and tools to facilitate efficient machine learning and AI research, including efficient tensor manipulations and gradient handling with methods such as `detach()` for creating gradient-free tensors.} } ``` # Code that generate it ```python #ref: https://chatgpt.com/c/671ff56a-563c-8001-afd5-94632fe63d67 import os import random import string from huggingface_hub import login from datasets import Dataset, DatasetDict # Function to load the Hugging Face API token from a file def load_token(file_path: str) -> str: """Load API token from a specified file path.""" with open(os.path.expanduser(file_path)) as f: return f.read().strip() # Function to log in to Hugging Face using a token def login_to_huggingface(token: str) -> None: """Authenticate with Hugging Face Hub.""" login(token=token) print("Login successful") # Function to generate a random word of a given length def generate_random_word(length: int, character_pool: str) -> str: """Generate a random word of specified length from a character pool.""" return "".join(random.choice(character_pool) for _ in range(length)) # Function to generate a single random sentence with "words" of random lengths def generate_random_sentence(sequence_length: int, character_pool: str) -> str: """Generate a random sentence of approximately sequence_length characters.""" words = [ generate_random_word(random.randint(3, 10), character_pool) for _ in range(sequence_length // 10) # Estimate number of words to fit length ] sentence = " ".join(words) # print(f"Generated sentence length: {len(sentence)}\a") # Print length and sound alert return sentence # Function to create a dataset of random "sentences" def create_random_text_dataset(num_sequences: int, sequence_length: int, character_pool: str) -> Dataset: """Create a dataset with random text sequences.""" data = { "text": [generate_random_sentence(sequence_length, character_pool) for _ in range(num_sequences)] } return Dataset.from_dict(data) # Main function to generate, inspect, and upload dataset with train, validation, and test splits def main() -> None: # Step 1: Load token and log in key_file_path: str = "/lfs/skampere1/0/brando9/keys/brandos_hf_token.txt" token: str = load_token(key_file_path) login_to_huggingface(token) # Step 2: Dataset parameters num_sequences_train: int = 5000 num_sequences_val: int = 5000 num_sequences_test: int = 5000 sequence_length: int = 512 character_pool: str = string.printable # All ASCII characters (letters, digits, punctuation, whitespace) # Step 3: Create datasets for each split train_dataset = create_random_text_dataset(num_sequences_train, sequence_length, character_pool) val_dataset = create_random_text_dataset(num_sequences_val, sequence_length, character_pool) test_dataset = create_random_text_dataset(num_sequences_test, sequence_length, character_pool) # Step 4: Combine into a DatasetDict with train, validation, and test splits dataset_dict = DatasetDict({ "train": train_dataset, "validation": val_dataset, "test": test_dataset }) # Step 5: Print a sample of the train dataset for verification print("Sample of train dataset:", train_dataset[:5]) # Step 6: Push the dataset to Hugging Face Hub dataset_name: str = "brando/random-ascii-dataset" dataset_dict.push_to_hub(dataset_name) print(f"Dataset uploaded to https://huggingface.co/datasets/{dataset_name}") # Run the main function if __name__ == "__main__": main() ```