kundank commited on
Commit
347557c
1 Parent(s): 2f30271

adding data builder script

Browse files
Files changed (1) hide show
  1. usb.py +162 -0
usb.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Acknowledgement: dataset builder script adapted from https://huggingface.co/datasets/glue/blob/main/glue.py
2
+
3
+ import datasets
4
+ import pdb
5
+ import jsonlines
6
+
7
+ CITATION_BLOB = '''
8
+ @article{krishna2023usb,
9
+ title={USB: A Unified Summarization Benchmark Across Tasks and Domains},
10
+ author={Krishna, Kundan and Gupta, Prakhar and Ramprasad, Sanjana and Wallace, Byron C and Bigham, Jeffrey P and Lipton, Zachary C},
11
+ booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
12
+ year={2023}
13
+ }
14
+ '''
15
+
16
+ DESCRIPTION_BLOB = '''
17
+ The USB benchmark consists of labeled datasets for a collection of 8 tasks dealing with text summarization,
18
+ particularly focusing on factuality and controllability of summary generation.
19
+ Paper can be found here : https://arxiv.org/abs/2305.14296
20
+ '''
21
+
22
+
23
+ class USBConfig(datasets.BuilderConfig):
24
+ def __init__(
25
+ self,
26
+ text_features,
27
+ label_column,
28
+ citation=CITATION_BLOB,
29
+ data_url="processed_data.tar.gz",
30
+ label_classes=None,
31
+ process_label=lambda x: x,
32
+ **kwargs,
33
+ ):
34
+ super(USBConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
35
+ self.text_features = text_features
36
+ self.label_column = label_column
37
+
38
+ self.citation = citation
39
+ self.label_classes = label_classes
40
+ self.process_label = process_label
41
+ self.url = "https://github.com/kukrishna/usb"
42
+
43
+ self.data_url=data_url
44
+
45
+
46
+ class USB(datasets.GeneratorBasedBuilder):
47
+ """The Unified Summarization Benchmark."""
48
+
49
+ BUILDER_CONFIGS = [
50
+ USBConfig(
51
+ name="topicbased_summarization",
52
+ description="Generate a short summary of the given article covering the given topic",
53
+ text_features={"summ_idx": "int", "input_lines": "listsent", "topic_name": "sent", "output_lines":"listsent"},
54
+ label_column="output_lines",
55
+ ),
56
+ USBConfig(
57
+ name="fixing_factuality",
58
+ description="Given a summary sentence (claim) and presented evidence from the article, edit the summary to remove unsupported or contradicting facts",
59
+ text_features={"summ_idx": "int", "input_lines": "listsent", "initial_summary": "sent", "fixed_summary":"sent"},
60
+ label_column="fixed_summary",
61
+ ),
62
+ USBConfig(
63
+ name="unsupported_span_prediction",
64
+ description="Given a summary sentence (claim) and presented evidence from the article, mark the parts of the summary which are not supported by the evidence by surrounding them with [] and [/] tags.",
65
+ text_features={"summ_idx": "int", "input_lines": "listsent", "summary": "sent", "annotated_summary":"sent"},
66
+ label_column="annotated_summary",
67
+ ),
68
+ USBConfig(
69
+ name="evidence_extraction",
70
+ description="Given an article and its summary, for each summary sentence, produce a minimal list of sentences from the article which provide sufficient evidence for all facts in the summary sentence.",
71
+ text_features={"input_lines": "listsent", "summary_lines": "listsent", "evidence_labels":"listlistint"},
72
+ label_column="evidence_labels",
73
+ ),
74
+ USBConfig(
75
+ name="multisentence_compression",
76
+ description="Given a list of sentences from an article, generate a single sentence summary of the presented cluster of sentences.",
77
+ text_features={"summ_idx": "int", "input_lines": "listsent", "output_lines": "listsent"},
78
+ label_column="output_lines",
79
+ ),
80
+ USBConfig(
81
+ name="extractive_summarization",
82
+ description="Given an article, generate an extractive summary by producing a subset o the article's sentences",
83
+ text_features={"input_lines": "listsent", "labels": "listint"},
84
+ label_column="labels",
85
+ ),
86
+ USBConfig(
87
+ name="abstractive_summarization",
88
+ description="Given an article, generate its abstractive summary",
89
+ text_features={"input_lines": "listsent", "output_lines": "listsent"},
90
+ label_column="output_lines",
91
+ ),
92
+ USBConfig(
93
+ name="factuality_classification",
94
+ description="Given a summary sentence (claim) and presented evidence from the article, predict whether all facts of the claim are supported by and in agreement with the presented evidence, or not.",
95
+ text_features={"summ_idx": "int", "input_lines": "listsent", "summary_sent": "sent", "label":"int"},
96
+ label_column="label",
97
+ ),
98
+ ]
99
+
100
+ def _split_generators(self, dl_manager):
101
+
102
+ data_root = dl_manager.download_and_extract(self.config.data_url)
103
+
104
+ return [
105
+ datasets.SplitGenerator(
106
+ name=datasets.Split.TRAIN,
107
+ gen_kwargs={
108
+ "data_file": f"{data_root}/{self.config.name}/train.jsonl",
109
+ "split": "train",
110
+ },
111
+ ),
112
+ datasets.SplitGenerator(
113
+ name=datasets.Split.VALIDATION,
114
+ gen_kwargs={
115
+ "data_file": f"{data_root}/{self.config.name}/validation.jsonl",
116
+ "split": "validation",
117
+ },
118
+ ),
119
+ datasets.SplitGenerator(
120
+ name=datasets.Split.TEST,
121
+ gen_kwargs={
122
+ "data_file": f"{data_root}/{self.config.name}/test.jsonl",
123
+ "split": "test",
124
+ },
125
+ ),
126
+ ]
127
+
128
+ def _generate_examples(self, data_file, split):
129
+ with jsonlines.open(data_file) as f:
130
+ for ex_idx,example in enumerate(f):
131
+ example["id"] = example["id"]+":"+str(ex_idx)
132
+ example["domain"] = example["id"].split("/")[0]
133
+ yield example["id"], example
134
+
135
+ def _info(self):
136
+ features = {}
137
+ features["id"] = datasets.Value("string")
138
+ features["domain"] = datasets.Value("string")
139
+
140
+ for (text_feature,dtype) in self.config.text_features.items():
141
+ hf_dtype = None
142
+ if dtype=="int":
143
+ hf_dtype = datasets.Value("int32")
144
+ elif dtype=="listint":
145
+ hf_dtype = datasets.Sequence(datasets.Value("int32"))
146
+ elif dtype=="listlistint":
147
+ hf_dtype = datasets.Sequence(datasets.Sequence(datasets.Value("int32")))
148
+ elif dtype=="sent":
149
+ hf_dtype = datasets.Value("string")
150
+ elif dtype=="listsent":
151
+ hf_dtype = datasets.Sequence(datasets.Value("string"))
152
+ else:
153
+ raise NotImplementedError
154
+
155
+ features[text_feature] = hf_dtype
156
+
157
+ return datasets.DatasetInfo(
158
+ description=DESCRIPTION_BLOB,
159
+ features=datasets.Features(features),
160
+ homepage=self.config.url,
161
+ citation=self.config.citation,
162
+ )