Datasets:
Adding the builder script for the all_annotations view
Browse files
usb.py
CHANGED
@@ -23,7 +23,7 @@ Paper can be found here : https://arxiv.org/abs/2305.14296
|
|
23 |
class USBConfig(datasets.BuilderConfig):
|
24 |
def __init__(
|
25 |
self,
|
26 |
-
|
27 |
label_column,
|
28 |
citation=CITATION_BLOB,
|
29 |
data_url="processed_data.tar.gz",
|
@@ -32,7 +32,7 @@ class USBConfig(datasets.BuilderConfig):
|
|
32 |
**kwargs,
|
33 |
):
|
34 |
super(USBConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
35 |
-
self.
|
36 |
self.label_column = label_column
|
37 |
|
38 |
self.citation = citation
|
@@ -50,51 +50,57 @@ class USB(datasets.GeneratorBasedBuilder):
|
|
50 |
USBConfig(
|
51 |
name="topicbased_summarization",
|
52 |
description="Generate a short summary of the given article covering the given topic",
|
53 |
-
|
54 |
label_column="output_lines",
|
55 |
),
|
56 |
USBConfig(
|
57 |
name="fixing_factuality",
|
58 |
description="Given a summary sentence (claim) and presented evidence from the article, edit the summary to remove unsupported or contradicting facts",
|
59 |
-
|
60 |
label_column="fixed_summary",
|
61 |
),
|
62 |
USBConfig(
|
63 |
name="unsupported_span_prediction",
|
64 |
description="Given a summary sentence (claim) and presented evidence from the article, mark the parts of the summary which are not supported by the evidence by surrounding them with [] and [/] tags.",
|
65 |
-
|
66 |
label_column="annotated_summary",
|
67 |
),
|
68 |
USBConfig(
|
69 |
name="evidence_extraction",
|
70 |
description="Given an article and its summary, for each summary sentence, produce a minimal list of sentences from the article which provide sufficient evidence for all facts in the summary sentence.",
|
71 |
-
|
72 |
label_column="evidence_labels",
|
73 |
),
|
74 |
USBConfig(
|
75 |
name="multisentence_compression",
|
76 |
description="Given a list of sentences from an article, generate a single sentence summary of the presented cluster of sentences.",
|
77 |
-
|
78 |
label_column="output_lines",
|
79 |
),
|
80 |
USBConfig(
|
81 |
name="extractive_summarization",
|
82 |
description="Given an article, generate an extractive summary by producing a subset o the article's sentences",
|
83 |
-
|
84 |
label_column="labels",
|
85 |
),
|
86 |
USBConfig(
|
87 |
name="abstractive_summarization",
|
88 |
description="Given an article, generate its abstractive summary",
|
89 |
-
|
90 |
label_column="output_lines",
|
91 |
),
|
92 |
USBConfig(
|
93 |
name="factuality_classification",
|
94 |
description="Given a summary sentence (claim) and presented evidence from the article, predict whether all facts of the claim are supported by and in agreement with the presented evidence, or not.",
|
95 |
-
|
96 |
label_column="label",
|
97 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
]
|
99 |
|
100 |
def _split_generators(self, dl_manager):
|
@@ -136,8 +142,13 @@ class USB(datasets.GeneratorBasedBuilder):
|
|
136 |
features = {}
|
137 |
features["id"] = datasets.Value("string")
|
138 |
features["domain"] = datasets.Value("string")
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
for (
|
141 |
hf_dtype = None
|
142 |
if dtype=="int":
|
143 |
hf_dtype = datasets.Value("int32")
|
@@ -152,7 +163,7 @@ class USB(datasets.GeneratorBasedBuilder):
|
|
152 |
else:
|
153 |
raise NotImplementedError
|
154 |
|
155 |
-
features[
|
156 |
|
157 |
return datasets.DatasetInfo(
|
158 |
description=DESCRIPTION_BLOB,
|
|
|
23 |
class USBConfig(datasets.BuilderConfig):
|
24 |
def __init__(
|
25 |
self,
|
26 |
+
featurespec,
|
27 |
label_column,
|
28 |
citation=CITATION_BLOB,
|
29 |
data_url="processed_data.tar.gz",
|
|
|
32 |
**kwargs,
|
33 |
):
|
34 |
super(USBConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
35 |
+
self.featurespec = featurespec
|
36 |
self.label_column = label_column
|
37 |
|
38 |
self.citation = citation
|
|
|
50 |
USBConfig(
|
51 |
name="topicbased_summarization",
|
52 |
description="Generate a short summary of the given article covering the given topic",
|
53 |
+
featurespec={"summ_idx": "int", "input_lines": "listsent", "topic_name": "sent", "output_lines":"listsent"},
|
54 |
label_column="output_lines",
|
55 |
),
|
56 |
USBConfig(
|
57 |
name="fixing_factuality",
|
58 |
description="Given a summary sentence (claim) and presented evidence from the article, edit the summary to remove unsupported or contradicting facts",
|
59 |
+
featurespec={"summ_idx": "int", "input_lines": "listsent", "initial_summary": "sent", "fixed_summary":"sent"},
|
60 |
label_column="fixed_summary",
|
61 |
),
|
62 |
USBConfig(
|
63 |
name="unsupported_span_prediction",
|
64 |
description="Given a summary sentence (claim) and presented evidence from the article, mark the parts of the summary which are not supported by the evidence by surrounding them with [] and [/] tags.",
|
65 |
+
featurespec={"summ_idx": "int", "input_lines": "listsent", "summary": "sent", "annotated_summary":"sent"},
|
66 |
label_column="annotated_summary",
|
67 |
),
|
68 |
USBConfig(
|
69 |
name="evidence_extraction",
|
70 |
description="Given an article and its summary, for each summary sentence, produce a minimal list of sentences from the article which provide sufficient evidence for all facts in the summary sentence.",
|
71 |
+
featurespec={"input_lines": "listsent", "summary_lines": "listsent", "evidence_labels":"listlistint"},
|
72 |
label_column="evidence_labels",
|
73 |
),
|
74 |
USBConfig(
|
75 |
name="multisentence_compression",
|
76 |
description="Given a list of sentences from an article, generate a single sentence summary of the presented cluster of sentences.",
|
77 |
+
featurespec={"summ_idx": "int", "input_lines": "listsent", "output_lines": "listsent"},
|
78 |
label_column="output_lines",
|
79 |
),
|
80 |
USBConfig(
|
81 |
name="extractive_summarization",
|
82 |
description="Given an article, generate an extractive summary by producing a subset o the article's sentences",
|
83 |
+
featurespec={"input_lines": "listsent", "labels": "listint"},
|
84 |
label_column="labels",
|
85 |
),
|
86 |
USBConfig(
|
87 |
name="abstractive_summarization",
|
88 |
description="Given an article, generate its abstractive summary",
|
89 |
+
featurespec={"input_lines": "listsent", "output_lines": "listsent"},
|
90 |
label_column="output_lines",
|
91 |
),
|
92 |
USBConfig(
|
93 |
name="factuality_classification",
|
94 |
description="Given a summary sentence (claim) and presented evidence from the article, predict whether all facts of the claim are supported by and in agreement with the presented evidence, or not.",
|
95 |
+
featurespec={"summ_idx": "int", "input_lines": "listsent", "summary_sent": "sent", "label":"int"},
|
96 |
label_column="label",
|
97 |
),
|
98 |
+
USBConfig(
|
99 |
+
name="all_annotations",
|
100 |
+
description="All annotations collected in the creation of USB dataset in one place.",
|
101 |
+
featurespec={},
|
102 |
+
label_column=None,
|
103 |
+
),
|
104 |
]
|
105 |
|
106 |
def _split_generators(self, dl_manager):
|
|
|
142 |
features = {}
|
143 |
features["id"] = datasets.Value("string")
|
144 |
features["domain"] = datasets.Value("string")
|
145 |
+
|
146 |
+
if self.config.name=="all_annotations":
|
147 |
+
# handle this as a special case
|
148 |
+
features["source"] = datasets.Sequence({"txt": datasets.Value("string"), "section_name": datasets.Value("string"), "section_index": datasets.Value("int32"), "is_header":datasets.Value("bool")})
|
149 |
+
features["summary"] = datasets.Sequence({"pre_edit": datasets.Value("string"), "post_edit": datasets.Value("string"), "evidence": datasets.Sequence(datasets.Value("int32"))})
|
150 |
|
151 |
+
for (feature_name,dtype) in self.config.featurespec.items():
|
152 |
hf_dtype = None
|
153 |
if dtype=="int":
|
154 |
hf_dtype = datasets.Value("int32")
|
|
|
163 |
else:
|
164 |
raise NotImplementedError
|
165 |
|
166 |
+
features[feature_name] = hf_dtype
|
167 |
|
168 |
return datasets.DatasetInfo(
|
169 |
description=DESCRIPTION_BLOB,
|