|
|
|
import os
|
|
from os import path
|
|
import numpy as np
|
|
import PIL
|
|
from PIL import Image
|
|
from packaging import version
|
|
|
|
import sys
|
|
import torch
|
|
|
|
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
|
PIL_INTERPOLATION = {
|
|
"linear": PIL.Image.Resampling.BILINEAR,
|
|
"bilinear": PIL.Image.Resampling.BILINEAR,
|
|
"bicubic": PIL.Image.Resampling.BICUBIC,
|
|
"lanczos": PIL.Image.Resampling.LANCZOS,
|
|
"nearest": PIL.Image.Resampling.NEAREST,
|
|
}
|
|
else:
|
|
PIL_INTERPOLATION = {
|
|
"linear": PIL.Image.LINEAR,
|
|
"bilinear": PIL.Image.BILINEAR,
|
|
"bicubic": PIL.Image.BICUBIC,
|
|
"lanczos": PIL.Image.LANCZOS,
|
|
"nearest": PIL.Image.NEAREST,
|
|
}
|
|
|
|
ROOT = '/projects/katefgroup/datasets/gs_kubric/InpaintingFormat_Set50'
|
|
OUT_ROOT = os.path.join(ROOT)
|
|
RESOLUTION = 512
|
|
|
|
mask_dir = path.join(ROOT, 'Annotations')
|
|
image_dir = path.join(ROOT, 'JPEGImages')
|
|
|
|
videos = []
|
|
num_frames = {}
|
|
num_objects = {}
|
|
|
|
vid_names = os.listdir(image_dir)
|
|
for _video in vid_names:
|
|
videos.append(_video)
|
|
num_frames[_video] = len(os.listdir(path.join(image_dir, _video)))
|
|
num_objects[_video] = len(os.listdir(path.join(mask_dir, _video)))
|
|
|
|
for index in range(len(videos)):
|
|
video = videos[index]
|
|
num_objs = num_objects[video]
|
|
|
|
os.makedirs(os.path.join(os.path.join(OUT_ROOT, 'MergedAnnotations', video)), exist_ok=True)
|
|
|
|
img_file_names = os.listdir(path.join(image_dir, video))
|
|
|
|
for f in range(num_frames[video]):
|
|
|
|
|
|
file_name = img_file_names[f]
|
|
img_file = path.join(image_dir, video, file_name)
|
|
img = Image.open(img_file).convert('RGB')
|
|
img = img.resize((RESOLUTION, RESOLUTION))
|
|
|
|
binary_masks = np.zeros((2, RESOLUTION, RESOLUTION))
|
|
for i in range(num_objs):
|
|
mask_file = path.join(mask_dir, video, str(i).zfill(3), file_name[:-4]+".png")
|
|
mask = Image.open(mask_file).convert("RGB")
|
|
mask = mask.resize((RESOLUTION, RESOLUTION), PIL_INTERPOLATION["nearest"])
|
|
mask = np.array(mask)[:, :, 0]
|
|
if i != 0:
|
|
binary_masks[1] += (mask > 128)
|
|
binary_masks[1] = np.clip(binary_masks[1], 0, 1)
|
|
else:
|
|
binary_masks[i] = (mask > 128)
|
|
|
|
obj_id = 0
|
|
for _ in range(2):
|
|
os.makedirs(os.path.join(os.path.join(OUT_ROOT, 'MergedAnnotations', video, str(obj_id).zfill(3))), exist_ok=True)
|
|
Image.fromarray(binary_masks[obj_id].astype(np.uint8) * 255).save(os.path.join(OUT_ROOT, 'MergedAnnotations', video, str(obj_id).zfill(3), file_name[:-4]+".png"))
|
|
obj_id += 1 |