--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-small-context-news-1000 results: [] pipeline_tag: summarization --- # bart-large-cnn-finetuned-small-context-news-1000 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9930 - Rouge1: 65.1207 - Rouge2: 55.5654 - Rougel: 60.1703 - Rougelsum: 61.6717 - Gen Len: 66.6529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 85 | 0.4915 | 61.0185 | 47.1863 | 53.5499 | 55.4476 | 66.2824 | | No log | 2.0 | 170 | 0.5558 | 63.1675 | 51.7011 | 57.0742 | 58.1801 | 67.2235 | | No log | 3.0 | 255 | 0.5447 | 64.6201 | 54.8904 | 59.8669 | 60.7456 | 67.4529 | | No log | 4.0 | 340 | 0.5770 | 65.2542 | 54.571 | 59.89 | 61.0988 | 65.0941 | | No log | 5.0 | 425 | 0.6406 | 64.8868 | 54.2641 | 59.2758 | 60.4861 | 67.4118 | | 0.2062 | 6.0 | 510 | 0.6468 | 65.1216 | 54.5784 | 59.3594 | 60.3826 | 66.7529 | | 0.2062 | 7.0 | 595 | 0.6828 | 64.162 | 54.1786 | 59.1392 | 60.2517 | 67.4412 | | 0.2062 | 8.0 | 680 | 0.7481 | 64.6093 | 54.4423 | 59.9194 | 61.1767 | 66.2647 | | 0.2062 | 9.0 | 765 | 0.7916 | 65.0347 | 55.2975 | 60.3007 | 61.4619 | 67.8471 | | 0.2062 | 10.0 | 850 | 0.7699 | 65.672 | 55.5276 | 60.3711 | 61.5138 | 66.9529 | | 0.2062 | 11.0 | 935 | 0.7712 | 65.7327 | 55.9363 | 61.0215 | 62.1639 | 65.7294 | | 0.0273 | 12.0 | 1020 | 0.9920 | 65.2328 | 55.3817 | 60.0671 | 61.4812 | 66.3588 | | 0.0273 | 13.0 | 1105 | 0.8023 | 65.2372 | 55.2458 | 60.2251 | 61.5193 | 65.4824 | | 0.0273 | 14.0 | 1190 | 0.8660 | 65.0369 | 55.2548 | 59.8089 | 61.3785 | 68.0353 | | 0.0273 | 15.0 | 1275 | 0.9539 | 65.4251 | 55.1068 | 60.2355 | 61.6598 | 66.7765 | | 0.0273 | 16.0 | 1360 | 0.8840 | 65.544 | 55.951 | 59.9112 | 61.6029 | 66.7529 | | 0.0273 | 17.0 | 1445 | 0.9141 | 65.7685 | 55.4981 | 60.575 | 62.2381 | 66.4882 | | 0.009 | 18.0 | 1530 | 1.0024 | 65.4152 | 55.7546 | 60.5256 | 62.0985 | 67.2412 | | 0.009 | 19.0 | 1615 | 0.9997 | 65.0153 | 55.1772 | 60.103 | 61.4286 | 66.3529 | | 0.009 | 20.0 | 1700 | 0.9930 | 65.1207 | 55.5654 | 60.1703 | 61.6717 | 66.6529 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2