ppo-LunarLander-v2 / config.json
jdospina's picture
First upload
7bc5b76
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x786b84dd72e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x786b84dd7370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x786b84dd7400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x786b84dd7490>", "_build": "<function ActorCriticPolicy._build at 0x786b84dd7520>", "forward": "<function ActorCriticPolicy.forward at 0x786b84dd75b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x786b84dd7640>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x786b84dd76d0>", "_predict": "<function ActorCriticPolicy._predict at 0x786b84dd7760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x786b84dd77f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x786b84dd7880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x786b84dd7910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x786b84f76b40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702489624892079455, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANOpRT6momo/rjSXPQ5rCL/kzME++4NHvQAAAAAAAAAAZqbtvDafHrxLqJ88gv6tPJtvy7xHeRy7AACAPwAAgD+aZra9GQqJP7Rjnr5k6Q2/JbkMvnW8Ub4AAAAAAAAAABoHI7177py64ZoZOCD4BTPX3py6KjIxtwAAgD8AAIA/wNzbvXEpXjqmPCC+FblIvkMMDD066JA/AAAAAAAAgD/z66A9JfB0Pnr9J75kHou+489svZudpD0AAAAAAAAAAFoPi70UIIS6JfbButVkCbYNXog6elHgOQAAAAAAAIA/QO+2vSnIGLoJ/o64t+uns+/OUbmmy6k3AAAAAAAAgD+A02M9t6wOPwapV75ne8y+5LGIvTKpB74AAAAAAAAAAJohtrzcJg4/tnMSPRCwj74JrRC9fjG8PAAAAAAAAAAAzTLXPdzk0T6Ys4m+lGKivqTUpbwSZrm9AAAAAAAAAAA6wCa+g5FxP0teqb3vngi/9EH+vWIIvL0AAAAAAAAAAApSU77kGJU+CzeKPl9+Yb6/OLc9fwoBvQAAAAAAAAAAmn0HPHuq0j2jrAS+QpBFvkRGvTz5ArK9AAAAAAAAAAAz1ee8FOKCuoictzuHQy45XNTlujpBW7oAAIA/AACAPxrzfL24FLC7DtiDvNtUQj3A44W8CQcXugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCUvhMrVe+MAWyUTQoBjAF0lEdAkf6vnW8RMHV9lChoBkdAcjWgoPTXrmgHTTgBaAhHQJH/ov4/NaB1fZQoaAZHQEPYMUh3aBZoB0vaaAhHQJH/u3lS0jV1fZQoaAZHQHMCfseGO+9oB00bAWgIR0CSADKT0QK8dX2UKGgGR0ByWMHryDqXaAdL82gIR0CSADuwHJLedX2UKGgGR0Bxhytr9EThaAdN9AFoCEdAkgCHYL9deXV9lChoBkdAbgaPMB6rvWgHS/9oCEdAkgFKxgRbr3V9lChoBkdAcTSJ+lTFVGgHTQMBaAhHQJIBkBp5/sp1fZQoaAZHQHP4e3QUpNNoB0voaAhHQJICHVEuxr11fZQoaAZHQG67jurp7kZoB00UAWgIR0CSAxfGMn7YdX2UKGgGR0Byry69TP0JaAdNIwFoCEdAkgNLx3FDOXV9lChoBkdAcNJ5iVjZtmgHTQcBaAhHQJIDvoKUmlZ1fZQoaAZHQHDpeHrQgLZoB0v7aAhHQJIETp7kXDZ1fZQoaAZHQHCbZ31SOzZoB0v8aAhHQJIHIBPsRg91fZQoaAZHQHDPihi9ZidoB0vtaAhHQJIJxNtZV4p1fZQoaAZHQHCR8VUMoc9oB0vkaAhHQJIKDe/Ho5h1fZQoaAZHQHKz08eS0ShoB0vkaAhHQJIKHymQ8wJ1fZQoaAZHQHBtEgGKQ7toB00VAWgIR0CSCpjTa0x/dX2UKGgGR0Bw1b+wTufFaAdNCAFoCEdAkgsozabnYHV9lChoBkdAcsE33YcvNGgHS9loCEdAkgwhl18stnV9lChoBkdAcuOCtzS1E2gHTQwBaAhHQJIMYsnRb8p1fZQoaAZHQHAt57gKneloB00bAmgIR0CSDUz+3pfQdX2UKGgGR0BzSn2ZiNKiaAdNEwFoCEdAkg4oVARkE3V9lChoBkdAbZnuw5eZ5WgHTS4BaAhHQJIPAlLOAy51fZQoaAZHQHF//GuLaVVoB0v/aAhHQJIPGYRdyDJ1fZQoaAZHQHPMY4Qz1sdoB00JAWgIR0CSD1QsPJ7tdX2UKGgGR0Bx2itDD0lJaAdNCAFoCEdAkg/AA+6iCnV9lChoBkdAbmwnXumaY2gHTQMBaAhHQJIP+HmA9V51fZQoaAZHQG/Ei53C9AZoB00MAWgIR0CSEgBDXvphdX2UKGgGR0BwXljhDPWyaAdL52gIR0CSEw/0NBnjdX2UKGgGR0ByXQzBRAKOaAdL/mgIR0CSE0jlPrOadX2UKGgGR0BxvhDKHO8kaAdNAAFoCEdAkhN89fTkQ3V9lChoBkdAcUjQaJhvzmgHS+9oCEdAkhOp8fFJhHV9lChoBkdAcFXbYK6WgWgHTREBaAhHQJIT+Wa+evp1fZQoaAZHQHI6ZYkmhM9oB0vqaAhHQJIUPUjLSu11fZQoaAZHQG4zql54W1toB0vvaAhHQJIU8nKGL1p1fZQoaAZHQHClxpQDV6NoB00lAWgIR0CSFcqhlDnedX2UKGgGR0BviedEsrd4aAdL8mgIR0CSFi9R77bddX2UKGgGR0BydSwIMSbpaAdL7WgIR0CSFqXfIjnndX2UKGgGR0Bx5OO1fE4vaAdL/GgIR0CSFqafjCHidX2UKGgGR0BzB+47Rv3raAdNKQFoCEdAkhcldcB2fXV9lChoBkdAchS8ZUDMeWgHS/xoCEdAkhdCkKu0TnV9lChoBkdAcIVEaESM+GgHTSIBaAhHQJIXdD6WPcV1fZQoaAZHQGXt8XvYvnNoB03oA2gIR0CSF4hZyMkydX2UKGgGR0BuTwJu2qkuaAdLzWgIR0CSF815jYqYdX2UKGgGR0BuOdQGfPHDaAdNAgFoCEdAkiuurMkhR3V9lChoBkdAcjRp8F6iTWgHS+BoCEdAkiu1M7EHdHV9lChoBkdAcE+30PH1e2gHTQ4BaAhHQJIr1chTwUh1fZQoaAZHQHJgyy+pOvdoB00bAWgIR0CSLKaa1Cw9dX2UKGgGR0BtcvbqQiiZaAdNCAFoCEdAkiycSGrS3XV9lChoBkdAcFbKG+K0lmgHTRkBaAhHQJIsxihFmWd1fZQoaAZHQEenzkIX0oVoB0vPaAhHQJItmaa1Cw91fZQoaAZHQHBZaJIlMRJoB00OAWgIR0CSLcf7rLQpdX2UKGgGR0BwEAzKs+3ZaAdL7WgIR0CSLnLDhtLtdX2UKGgGR0BvnT2g3974aAdNFgFoCEdAki7KHj6vaHV9lChoBkdAbufFyaNMoWgHS/FoCEdAki+IV2zOX3V9lChoBkdAcuSeaKDTSmgHTQUBaAhHQJIv3JT2nKp1fZQoaAZHQHHJ+9Jz1btoB0vwaAhHQJIv9qQA+6l1fZQoaAZHQHG08X7+DOFoB00UAWgIR0CSMCqoZQ54dX2UKGgGR0ByHJfICEHuaAdNDwFoCEdAkjBv6fra/XV9lChoBkdAU6AB6rvLHWgHS6poCEdAkjKejmCAc3V9lChoBkdAcn7CpWFN+WgHS9FoCEdAkjK6yWzF/HV9lChoBkdAcquNqxkd3mgHS/doCEdAkjLuAVfu1HV9lChoBkdAcQzF1B+nZWgHTQgBaAhHQJIzV6v7m+11fZQoaAZHQEWTb9If8uVoB0vGaAhHQJI0dHavicZ1fZQoaAZHQHG5AFgUlAxoB00rAWgIR0CSNJ5Yoy9FdX2UKGgGR0BvI/8dgfEGaAdNFgFoCEdAkjTsX7+DOHV9lChoBkdAcX0RF7Uoa2gHTRkBaAhHQJI1E0Q9RrJ1fZQoaAZHQHHgwVTJhfBoB00LAWgIR0CSNaoNutOmdX2UKGgGR0BxUbcuanaWaAdL7WgIR0CSNgKq4pc5dX2UKGgGR0BzDCgBcRlIaAdL2mgIR0CSNnXBP9DQdX2UKGgGR0ByXrjLjghsaAdL52gIR0CSNoFH8TBZdX2UKGgGR0BxhWZAprk9aAdL4mgIR0CSNshvBJqZdX2UKGgGR0ByYP8hs67vaAdL4WgIR0CSNvVclgMMdX2UKGgGR0Bw7Ptv4ubraAdNIAFoCEdAkjoRXfZVXHV9lChoBkdAc0d6Ae7tiWgHS/NoCEdAkjvqJyhi9nV9lChoBkdAccl6KtPpIWgHS/loCEdAkjwD6eoUBXV9lChoBkdAc3ziwjdHlWgHS9RoCEdAkj3FTR6WxHV9lChoBkdAcSkm03Ov+2gHTQsBaAhHQJI+TfHggox1fZQoaAZHQHHramoBJZpoB0vvaAhHQJI/bDjzZpV1fZQoaAZHQG5OHDiwSrZoB00LAWgIR0CSQDihFmWddX2UKGgGR0ByDKt7rs0IaAdNEAFoCEdAkkBBIvrWy3V9lChoBkdAbuurNGEwnGgHS/FoCEdAkkCOM2m52HV9lChoBkdAcgi2VmjCYWgHS+doCEdAkkFjl1bJOnV9lChoBkdAbzMgHu7YkGgHS/5oCEdAkkLiEcsDn3V9lChoBkdAcsEdFOO802gHTRQBaAhHQJJDULCvX9R1fZQoaAZHQHHsuFpPAO9oB00EAWgIR0CSQ2sDGLk0dX2UKGgGR0BxcVupCKJmaAdL9GgIR0CSRrsoUi6hdX2UKGgGR0Bye5lbu+h5aAdL7WgIR0CSR+q8UVSGdX2UKGgGR0Bynq6xxDLKaAdL/WgIR0CSSH0PH1e0dX2UKGgGR0BwuGWt2cJ/aAdL+WgIR0CSSZo6jnFHdX2UKGgGR0BxGW27Wd3CaAdNBQFoCEdAkkp4TPBzm3V9lChoBkdAcqQs2vStvGgHS/FoCEdAkkqEJv5xi3V9lChoBkdAbWP9Ujs2N2gHS+NoCEdAkkqVotcv/XV9lChoBkdActt2i+L3sWgHS99oCEdAkktsTzundnV9lChoBkdAcN81k1/DtWgHS/1oCEdAkkuInWrfcnV9lChoBkdAWRvGwRoRI2gHTegDaAhHQJJMfTOPeYV1fZQoaAZHQG5OoBq9GqhoB0vyaAhHQJJNRQzk6tF1fZQoaAZHQG8hCCz1K5FoB00xAWgIR0CSTZb7TDwZdX2UKGgGR0BunUJdB0IUaAdNEwFoCEdAkk6Rn3+MqHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}