kathleenge commited on
Commit
006e61b
1 Parent(s): e07d2c0

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google-bert/bert-base-uncased
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:100000
13
+ - loss:DenoisingAutoEncoderLoss
14
+ widget:
15
+ - source_sentence: 1109/icnsurv
16
+ sentences:
17
+ - 1109/icnsurv
18
+ - A cost function is needed to assign a performance metric value to a particular
19
+ test run
20
+ - Aircraft OperationsFuture aircraft will sense, control, communicate, and navigate
21
+ with increasing levels of autonomy, enabling new concepts in air traffic management
22
+ - source_sentence: Table 1 of and to well as the median taxi from STBO KDFW
23
+ sentences:
24
+ - Table 1 Metrics of accuracy, median and MAD of residuals as compared to STBO predictions,
25
+ as well as the median taxi time from STBO for KDFW and KCLT airports
26
+ - ', IEEE, 2005, pp'
27
+ - 'RESULTS: EFFICIENCY ANALYSIS'
28
+ - source_sentence: gate time to known
29
+ sentences:
30
+ - 3FIVE INPUT VARIABLESParameterDescriptionHead windHead WindGust windGust WindCeiling_ftForecast
31
+ CeilingVis_ftForecast VisibilityAct_Land_Wgt Actual Landing Weightfive parameters
32
+ listed in
33
+ - Instead, gate departure time was assumed to be known
34
+ - The proof is very similar to that presented for the NP-completeness of ASP, and
35
+ is based on reduction from PLANAR-P3( 6), hence we simply provide the main idea
36
+ of the proof
37
+ - source_sentence: ', Hough" Pattern Recognition, Vol'
38
+ sentences:
39
+ - 9 Station Keeping scores
40
+ - "\t\tAGARD CD-410"
41
+ - ', "Generalizing the Hough Transform to Detect Arbitrary Shapes," Pattern Recognition,
42
+ Vol'
43
+ - source_sentence: Airlines often ferry from locations fuel prices
44
+ sentences:
45
+ - Scheduler Inputs and Order of ConsiderationThe surface model provides EOBT, UOBT,
46
+ UTOT and other detailed flight-specific modeled input
47
+ - "\t\t\tKeithWichman"
48
+ - Airlines often ferry fuel from locations where fuel prices are cheapest
49
+ ---
50
+
51
+ # SentenceTransformer based on google-bert/bert-base-uncased
52
+
53
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
54
+
55
+ ## Model Details
56
+
57
+ ### Model Description
58
+ - **Model Type:** Sentence Transformer
59
+ - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
60
+ - **Maximum Sequence Length:** 512 tokens
61
+ - **Output Dimensionality:** 768 tokens
62
+ - **Similarity Function:** Cosine Similarity
63
+ <!-- - **Training Dataset:** Unknown -->
64
+ <!-- - **Language:** Unknown -->
65
+ <!-- - **License:** Unknown -->
66
+
67
+ ### Model Sources
68
+
69
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
70
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
71
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
72
+
73
+ ### Full Model Architecture
74
+
75
+ ```
76
+ SentenceTransformer(
77
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
78
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
79
+ )
80
+ ```
81
+
82
+ ## Usage
83
+
84
+ ### Direct Usage (Sentence Transformers)
85
+
86
+ First install the Sentence Transformers library:
87
+
88
+ ```bash
89
+ pip install -U sentence-transformers
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+ ```python
94
+ from sentence_transformers import SentenceTransformer
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SentenceTransformer("kathleenge/tsdae-bert-base-uncased")
98
+ # Run inference
99
+ sentences = [
100
+ 'Airlines often ferry from locations fuel prices',
101
+ 'Airlines often ferry fuel from locations where fuel prices are cheapest',
102
+ '\t\t\tKeithWichman',
103
+ ]
104
+ embeddings = model.encode(sentences)
105
+ print(embeddings.shape)
106
+ # [3, 768]
107
+
108
+ # Get the similarity scores for the embeddings
109
+ similarities = model.similarity(embeddings, embeddings)
110
+ print(similarities.shape)
111
+ # [3, 3]
112
+ ```
113
+
114
+ <!--
115
+ ### Direct Usage (Transformers)
116
+
117
+ <details><summary>Click to see the direct usage in Transformers</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Downstream Usage (Sentence Transformers)
124
+
125
+ You can finetune this model on your own dataset.
126
+
127
+ <details><summary>Click to expand</summary>
128
+
129
+ </details>
130
+ -->
131
+
132
+ <!--
133
+ ### Out-of-Scope Use
134
+
135
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
136
+ -->
137
+
138
+ <!--
139
+ ## Bias, Risks and Limitations
140
+
141
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
142
+ -->
143
+
144
+ <!--
145
+ ### Recommendations
146
+
147
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
148
+ -->
149
+
150
+ ## Training Details
151
+
152
+ ### Training Dataset
153
+
154
+ #### Unnamed Dataset
155
+
156
+
157
+ * Size: 100,000 training samples
158
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
159
+ * Approximate statistics based on the first 1000 samples:
160
+ | | sentence_0 | sentence_1 |
161
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
162
+ | type | string | string |
163
+ | details | <ul><li>min: 3 tokens</li><li>mean: 10.95 tokens</li><li>max: 106 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 23.39 tokens</li><li>max: 239 tokens</li></ul> |
164
+ * Samples:
165
+ | sentence_0 | sentence_1 |
166
+ |:------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
167
+ | <code>selected and reviewed for value current on metroplex</code> | <code>The literature was selected and reviewed for its value to the current research on metroplex operations</code> |
168
+ | <code>and</code> | <code>, and Dulchinos, V</code> |
169
+ | <code>,</code> | <code>, Atkins, S</code> |
170
+ * Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
171
+
172
+ ### Training Hyperparameters
173
+ #### Non-Default Hyperparameters
174
+
175
+ - `num_train_epochs`: 1
176
+ - `multi_dataset_batch_sampler`: round_robin
177
+
178
+ #### All Hyperparameters
179
+ <details><summary>Click to expand</summary>
180
+
181
+ - `overwrite_output_dir`: False
182
+ - `do_predict`: False
183
+ - `eval_strategy`: no
184
+ - `prediction_loss_only`: True
185
+ - `per_device_train_batch_size`: 8
186
+ - `per_device_eval_batch_size`: 8
187
+ - `per_gpu_train_batch_size`: None
188
+ - `per_gpu_eval_batch_size`: None
189
+ - `gradient_accumulation_steps`: 1
190
+ - `eval_accumulation_steps`: None
191
+ - `learning_rate`: 5e-05
192
+ - `weight_decay`: 0.0
193
+ - `adam_beta1`: 0.9
194
+ - `adam_beta2`: 0.999
195
+ - `adam_epsilon`: 1e-08
196
+ - `max_grad_norm`: 1
197
+ - `num_train_epochs`: 1
198
+ - `max_steps`: -1
199
+ - `lr_scheduler_type`: linear
200
+ - `lr_scheduler_kwargs`: {}
201
+ - `warmup_ratio`: 0.0
202
+ - `warmup_steps`: 0
203
+ - `log_level`: passive
204
+ - `log_level_replica`: warning
205
+ - `log_on_each_node`: True
206
+ - `logging_nan_inf_filter`: True
207
+ - `save_safetensors`: True
208
+ - `save_on_each_node`: False
209
+ - `save_only_model`: False
210
+ - `restore_callback_states_from_checkpoint`: False
211
+ - `no_cuda`: False
212
+ - `use_cpu`: False
213
+ - `use_mps_device`: False
214
+ - `seed`: 42
215
+ - `data_seed`: None
216
+ - `jit_mode_eval`: False
217
+ - `use_ipex`: False
218
+ - `bf16`: False
219
+ - `fp16`: False
220
+ - `fp16_opt_level`: O1
221
+ - `half_precision_backend`: auto
222
+ - `bf16_full_eval`: False
223
+ - `fp16_full_eval`: False
224
+ - `tf32`: None
225
+ - `local_rank`: 0
226
+ - `ddp_backend`: None
227
+ - `tpu_num_cores`: None
228
+ - `tpu_metrics_debug`: False
229
+ - `debug`: []
230
+ - `dataloader_drop_last`: False
231
+ - `dataloader_num_workers`: 0
232
+ - `dataloader_prefetch_factor`: None
233
+ - `past_index`: -1
234
+ - `disable_tqdm`: False
235
+ - `remove_unused_columns`: True
236
+ - `label_names`: None
237
+ - `load_best_model_at_end`: False
238
+ - `ignore_data_skip`: False
239
+ - `fsdp`: []
240
+ - `fsdp_min_num_params`: 0
241
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
242
+ - `fsdp_transformer_layer_cls_to_wrap`: None
243
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
244
+ - `deepspeed`: None
245
+ - `label_smoothing_factor`: 0.0
246
+ - `optim`: adamw_torch
247
+ - `optim_args`: None
248
+ - `adafactor`: False
249
+ - `group_by_length`: False
250
+ - `length_column_name`: length
251
+ - `ddp_find_unused_parameters`: None
252
+ - `ddp_bucket_cap_mb`: None
253
+ - `ddp_broadcast_buffers`: False
254
+ - `dataloader_pin_memory`: True
255
+ - `dataloader_persistent_workers`: False
256
+ - `skip_memory_metrics`: True
257
+ - `use_legacy_prediction_loop`: False
258
+ - `push_to_hub`: False
259
+ - `resume_from_checkpoint`: None
260
+ - `hub_model_id`: None
261
+ - `hub_strategy`: every_save
262
+ - `hub_private_repo`: False
263
+ - `hub_always_push`: False
264
+ - `gradient_checkpointing`: False
265
+ - `gradient_checkpointing_kwargs`: None
266
+ - `include_inputs_for_metrics`: False
267
+ - `eval_do_concat_batches`: True
268
+ - `fp16_backend`: auto
269
+ - `push_to_hub_model_id`: None
270
+ - `push_to_hub_organization`: None
271
+ - `mp_parameters`:
272
+ - `auto_find_batch_size`: False
273
+ - `full_determinism`: False
274
+ - `torchdynamo`: None
275
+ - `ray_scope`: last
276
+ - `ddp_timeout`: 1800
277
+ - `torch_compile`: False
278
+ - `torch_compile_backend`: None
279
+ - `torch_compile_mode`: None
280
+ - `dispatch_batches`: None
281
+ - `split_batches`: None
282
+ - `include_tokens_per_second`: False
283
+ - `include_num_input_tokens_seen`: False
284
+ - `neftune_noise_alpha`: None
285
+ - `optim_target_modules`: None
286
+ - `batch_eval_metrics`: False
287
+ - `eval_on_start`: False
288
+ - `batch_sampler`: batch_sampler
289
+ - `multi_dataset_batch_sampler`: round_robin
290
+
291
+ </details>
292
+
293
+ ### Training Logs
294
+ | Epoch | Step | Training Loss |
295
+ |:-----:|:-----:|:-------------:|
296
+ | 0.04 | 500 | 7.3777 |
297
+ | 0.08 | 1000 | 6.9771 |
298
+ | 0.12 | 1500 | 6.8481 |
299
+ | 0.16 | 2000 | 6.7737 |
300
+ | 0.2 | 2500 | 6.6935 |
301
+ | 0.24 | 3000 | 6.6264 |
302
+ | 0.28 | 3500 | 6.5918 |
303
+ | 0.32 | 4000 | 6.5504 |
304
+ | 0.36 | 4500 | 6.4805 |
305
+ | 0.4 | 5000 | 6.4539 |
306
+ | 0.44 | 5500 | 6.4242 |
307
+ | 0.48 | 6000 | 6.4017 |
308
+ | 0.52 | 6500 | 6.3808 |
309
+ | 0.56 | 7000 | 6.3595 |
310
+ | 0.6 | 7500 | 6.3174 |
311
+ | 0.64 | 8000 | 6.2911 |
312
+ | 0.68 | 8500 | 6.2917 |
313
+ | 0.72 | 9000 | 6.2555 |
314
+ | 0.76 | 9500 | 6.2314 |
315
+ | 0.8 | 10000 | 6.2223 |
316
+ | 0.84 | 10500 | 6.1852 |
317
+ | 0.88 | 11000 | 6.2067 |
318
+ | 0.92 | 11500 | 6.1562 |
319
+ | 0.96 | 12000 | 6.1563 |
320
+ | 1.0 | 12500 | 6.092 |
321
+
322
+
323
+ ### Framework Versions
324
+ - Python: 3.10.12
325
+ - Sentence Transformers: 3.0.1
326
+ - Transformers: 4.42.4
327
+ - PyTorch: 2.3.1+cu121
328
+ - Accelerate: 0.32.1
329
+ - Datasets: 2.20.0
330
+ - Tokenizers: 0.19.1
331
+
332
+ ## Citation
333
+
334
+ ### BibTeX
335
+
336
+ #### Sentence Transformers
337
+ ```bibtex
338
+ @inproceedings{reimers-2019-sentence-bert,
339
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
340
+ author = "Reimers, Nils and Gurevych, Iryna",
341
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
342
+ month = "11",
343
+ year = "2019",
344
+ publisher = "Association for Computational Linguistics",
345
+ url = "https://arxiv.org/abs/1908.10084",
346
+ }
347
+ ```
348
+
349
+ #### DenoisingAutoEncoderLoss
350
+ ```bibtex
351
+ @inproceedings{wang-2021-TSDAE,
352
+ title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
353
+ author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
354
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
355
+ month = nov,
356
+ year = "2021",
357
+ address = "Punta Cana, Dominican Republic",
358
+ publisher = "Association for Computational Linguistics",
359
+ pages = "671--688",
360
+ url = "https://arxiv.org/abs/2104.06979",
361
+ }
362
+ ```
363
+
364
+ <!--
365
+ ## Glossary
366
+
367
+ *Clearly define terms in order to be accessible across audiences.*
368
+ -->
369
+
370
+ <!--
371
+ ## Model Card Authors
372
+
373
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
374
+ -->
375
+
376
+ <!--
377
+ ## Model Card Contact
378
+
379
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
380
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8cf533c168592d6d49509431cffa1ce06a3cf8a62097efc0ec76a3e625e0d58
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff