File size: 2,053 Bytes
927b488 f495e31 927b488 dee9ab5 f495e31 927b488 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
base_model: distilbert/distilroberta-base
tags:
- generated_from_keras_callback
model-index:
- name: kushalt/distilroberta-base-finetuned-cola
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# kushalt/distilroberta-base-finetuned-cola
This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2254
- Validation Loss: 0.5238
- Train Matthews Correlation: 0.5703
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Matthews Correlation | Epoch |
|:----------:|:---------------:|:--------------------------:|:-----:|
| 0.5093 | 0.4476 | 0.5047 | 0 |
| 0.3379 | 0.4341 | 0.5541 | 1 |
| 0.2254 | 0.5238 | 0.5703 | 2 |
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2
|