--- license: mit base_model: meta-llama/Meta-Llama-3-8B --- ## [miniCTX: Neural Theorem Proving with (Long-)Contexts]() File-tuned context model based on [miniCTX: Neural Theorem Proving with (Long-)Contexts](https://www.arxiv.org/abs/2408.03350). - Base language model: Llama 3 8B - Data: [ntp-mathlib-instruct-context](https://huggingface.co/datasets/l3lab/ntp-mathlib-instruct-context) It is specifically finetuned for Lean 4 tactic prediction given proof states and optional file contexts. #### Example input ``` /- You are proving a theorem in Lean 4. You are given the following information: - The file contents up to the current tactic, inside [CTX]...[/CTX] - The current proof state, inside [STATE]...[/STATE] Your task is to generate the next tactic in the proof. Put the next tactic inside [TAC]...[/TAC] -/ [CTX] import Mathlib.Data.Nat.Prime theorem test_thm (m n : Nat) (h : m.Coprime n) : m.gcd n = 1 := by [/CTX] [STATE] m n : ℕ h : Nat.Coprime m n ⊢ Nat.gcd m n = 1 [/STATE] [TAC] ``` #### Example output ``` rw [Nat.Coprime] at h [/TAC] ``` #### Citation Please cite: ``` @misc{hu2024minictx, author = {Jiewen Hu and Thomas Zhu and Sean Welleck}, title = {miniCTX: Neural Theorem Proving with (Long-)Contexts}, year = {2024}, eprint={2408.03350}, archivePrefix={arXiv}, } ```