File size: 2,240 Bytes
e1b9c1e 04e8463 e1b9c1e b7af928 e1b9c1e 04e8463 e1b9c1e 45ff6fc e1b9c1e 02eeed4 e1b9c1e 45ff6fc e1b9c1e 45ff6fc e1b9c1e c40ca9e 06dff3d c40ca9e 06dff3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: cc-by-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: Maltehb/danish-bert-botxo
model-index:
- name: da-sentiment
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# da-sentiment
This model is a fine-tuned version of [Maltehb/danish-bert-botxo](https://huggingface.co/Maltehb/danish-bert-botxo) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4976
- Accuracy: 0.8377
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 58 | 0.6168 | 0.7446 |
| No log | 2.0 | 116 | 0.5689 | 0.7554 |
| 0.4255 | 3.0 | 174 | 0.5542 | 0.7814 |
| 0.4255 | 4.0 | 232 | 0.5224 | 0.7944 |
| 0.2655 | 5.0 | 290 | 0.5172 | 0.8030 |
| 0.2655 | 6.0 | 348 | 0.4992 | 0.8182 |
| 0.1944 | 7.0 | 406 | 0.4852 | 0.8290 |
| 0.1944 | 8.0 | 464 | 0.4972 | 0.8312 |
| 0.1772 | 9.0 | 522 | 0.4905 | 0.8333 |
| 0.1772 | 10.0 | 580 | 0.4915 | 0.8290 |
| 0.1772 | 11.0 | 638 | 0.4936 | 0.8333 |
| 0.1654 | 12.0 | 696 | 0.4939 | 0.8333 |
| 0.1654 | 13.0 | 754 | 0.4944 | 0.8377 |
| 0.1605 | 14.0 | 812 | 0.4969 | 0.8355 |
| 0.1605 | 15.0 | 870 | 0.4976 | 0.8377 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|