File size: 3,841 Bytes
36642a6
 
 
 
61611cc
 
 
36642a6
 
 
 
 
 
 
 
 
 
8da562b
36642a6
c8b03a0
 
36642a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8b03a0
36642a6
 
 
 
 
4c7e894
36642a6
 
 
c8b03a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36642a6
 
 
 
c8b03a0
36642a6
c8b03a0
36642a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mirfan899/kids_phoneme_sm
base_model: facebook/wav2vec2-large-xlsr-53
model-index:
- name: kids_phoneme_sm_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# kids_phoneme_sm_model

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the https://huggingface.co/datasets/mirfan899/kids_phoneme_sm dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5405
- Cer: 0.2770

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.2595        | 0.74  | 500   | 3.7094          | 1.0    |
| 2.8393        | 1.48  | 1000  | 3.2563          | 1.0    |
| 2.7916        | 2.22  | 1500  | 3.0450          | 1.0    |
| 1.9585        | 2.96  | 2000  | 1.0280          | 0.8428 |
| 1.0099        | 3.7   | 2500  | 0.6477          | 0.5162 |
| 0.7968        | 4.44  | 3000  | 0.5551          | 0.4592 |
| 0.6977        | 5.19  | 3500  | 0.5107          | 0.4065 |
| 0.609         | 5.93  | 4000  | 0.4763          | 0.3916 |
| 0.5941        | 6.67  | 4500  | 0.4817          | 0.3850 |
| 0.5411        | 7.41  | 5000  | 0.4755          | 0.3639 |
| 0.5021        | 8.15  | 5500  | 0.4649          | 0.3622 |
| 0.4884        | 8.89  | 6000  | 0.4630          | 0.3569 |
| 0.4484        | 9.63  | 6500  | 0.4675          | 0.3420 |
| 0.4432        | 10.37 | 7000  | 0.4192          | 0.3402 |
| 0.399         | 11.11 | 7500  | 0.4508          | 0.3310 |
| 0.4215        | 11.85 | 8000  | 0.4406          | 0.3345 |
| 0.366         | 12.59 | 8500  | 0.4620          | 0.3248 |
| 0.3708        | 13.33 | 9000  | 0.4594          | 0.3327 |
| 0.3352        | 14.07 | 9500  | 0.4649          | 0.3121 |
| 0.3468        | 14.81 | 10000 | 0.4413          | 0.3020 |
| 0.3283        | 15.56 | 10500 | 0.4948          | 0.2915 |
| 0.3222        | 16.3  | 11000 | 0.4870          | 0.3025 |
| 0.3081        | 17.04 | 11500 | 0.4779          | 0.2919 |
| 0.3099        | 17.78 | 12000 | 0.4927          | 0.2871 |
| 0.2485        | 18.52 | 12500 | 0.5013          | 0.2831 |
| 0.3163        | 19.26 | 13000 | 0.4929          | 0.2888 |
| 0.2555        | 20.0  | 13500 | 0.5234          | 0.2888 |
| 0.2705        | 20.74 | 14000 | 0.5259          | 0.2818 |
| 0.2632        | 21.48 | 14500 | 0.5105          | 0.2831 |
| 0.2374        | 22.22 | 15000 | 0.5284          | 0.2845 |
| 0.2565        | 22.96 | 15500 | 0.5237          | 0.2875 |
| 0.2394        | 23.7  | 16000 | 0.5368          | 0.2818 |
| 0.2458        | 24.44 | 16500 | 0.5386          | 0.2814 |
| 0.2383        | 25.19 | 17000 | 0.5366          | 0.2788 |
| 0.2152        | 25.93 | 17500 | 0.5320          | 0.2770 |
| 0.231         | 26.67 | 18000 | 0.5441          | 0.2779 |
| 0.2061        | 27.41 | 18500 | 0.5448          | 0.2796 |
| 0.245         | 28.15 | 19000 | 0.5413          | 0.2796 |
| 0.2119        | 28.89 | 19500 | 0.5379          | 0.2774 |
| 0.2155        | 29.63 | 20000 | 0.5405          | 0.2770 |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.13.0
- Tokenizers 0.13.3