update model card README.md
Browse files
README.md
CHANGED
@@ -14,8 +14,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss:
|
18 |
-
- Cer: 0
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -34,7 +34,7 @@ More information needed
|
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
-
- learning_rate: 4e-
|
38 |
- train_batch_size: 2
|
39 |
- eval_batch_size: 8
|
40 |
- seed: 42
|
@@ -44,48 +44,48 @@ The following hyperparameters were used during training:
|
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
-
| Training Loss | Epoch | Step | Validation Loss | Cer
|
48 |
-
|
49 |
-
|
|
50 |
-
|
|
51 |
-
|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
89 |
|
90 |
|
91 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 15.8911
|
18 |
+
- Cer: 1.0
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 4e-59
|
38 |
- train_batch_size: 2
|
39 |
- eval_batch_size: 8
|
40 |
- seed: 42
|
|
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
48 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---:|
|
49 |
+
| 6.5005 | 0.74 | 500 | 15.8911 | 1.0 |
|
50 |
+
| 6.3865 | 1.48 | 1000 | 15.8911 | 1.0 |
|
51 |
+
| 6.3822 | 2.22 | 1500 | 15.8911 | 1.0 |
|
52 |
+
| 6.4251 | 2.96 | 2000 | 15.8911 | 1.0 |
|
53 |
+
| 6.3836 | 3.7 | 2500 | 15.8911 | 1.0 |
|
54 |
+
| 6.4552 | 4.44 | 3000 | 15.8911 | 1.0 |
|
55 |
+
| 6.4287 | 5.19 | 3500 | 15.8911 | 1.0 |
|
56 |
+
| 6.4304 | 5.93 | 4000 | 15.8911 | 1.0 |
|
57 |
+
| 6.375 | 6.67 | 4500 | 15.8911 | 1.0 |
|
58 |
+
| 6.5434 | 7.41 | 5000 | 15.8911 | 1.0 |
|
59 |
+
| 6.319 | 8.15 | 5500 | 15.8911 | 1.0 |
|
60 |
+
| 6.4693 | 8.89 | 6000 | 15.8911 | 1.0 |
|
61 |
+
| 6.4585 | 9.63 | 6500 | 15.8911 | 1.0 |
|
62 |
+
| 6.4795 | 10.37 | 7000 | 15.8911 | 1.0 |
|
63 |
+
| 6.393 | 11.11 | 7500 | 15.8911 | 1.0 |
|
64 |
+
| 6.3489 | 11.85 | 8000 | 15.8911 | 1.0 |
|
65 |
+
| 6.4511 | 12.59 | 8500 | 15.8911 | 1.0 |
|
66 |
+
| 6.3378 | 13.33 | 9000 | 15.8911 | 1.0 |
|
67 |
+
| 6.5094 | 14.07 | 9500 | 15.8911 | 1.0 |
|
68 |
+
| 6.3643 | 14.81 | 10000 | 15.8911 | 1.0 |
|
69 |
+
| 6.5079 | 15.56 | 10500 | 15.8911 | 1.0 |
|
70 |
+
| 6.4272 | 16.3 | 11000 | 15.8911 | 1.0 |
|
71 |
+
| 6.3937 | 17.04 | 11500 | 15.8911 | 1.0 |
|
72 |
+
| 6.3704 | 17.78 | 12000 | 15.8911 | 1.0 |
|
73 |
+
| 6.3797 | 18.52 | 12500 | 15.8911 | 1.0 |
|
74 |
+
| 6.5126 | 19.26 | 13000 | 15.8911 | 1.0 |
|
75 |
+
| 6.4111 | 20.0 | 13500 | 15.8911 | 1.0 |
|
76 |
+
| 6.3557 | 20.74 | 14000 | 15.8911 | 1.0 |
|
77 |
+
| 6.5705 | 21.48 | 14500 | 15.8911 | 1.0 |
|
78 |
+
| 6.3207 | 22.22 | 15000 | 15.8911 | 1.0 |
|
79 |
+
| 6.4664 | 22.96 | 15500 | 15.8911 | 1.0 |
|
80 |
+
| 6.4401 | 23.7 | 16000 | 15.8911 | 1.0 |
|
81 |
+
| 6.4136 | 24.44 | 16500 | 15.8911 | 1.0 |
|
82 |
+
| 6.5345 | 25.19 | 17000 | 15.8911 | 1.0 |
|
83 |
+
| 6.4097 | 25.93 | 17500 | 15.8911 | 1.0 |
|
84 |
+
| 6.2736 | 26.67 | 18000 | 15.8911 | 1.0 |
|
85 |
+
| 6.5474 | 27.41 | 18500 | 15.8911 | 1.0 |
|
86 |
+
| 6.3997 | 28.15 | 19000 | 15.8911 | 1.0 |
|
87 |
+
| 6.3997 | 28.89 | 19500 | 15.8911 | 1.0 |
|
88 |
+
| 6.5538 | 29.63 | 20000 | 15.8911 | 1.0 |
|
89 |
|
90 |
|
91 |
### Framework versions
|