File size: 4,290 Bytes
da82baf e835600 16bf59f e835600 16bf59f e835600 16bf59f e835600 16bf59f e835600 16bf59f e835600 16bf59f e835600 da82baf 1456aae e835600 dcb9741 828e963 df35378 dcb9741 a8fdc8f dcb9741 a8fdc8f d6c689e dcb9741 e835600 16bf59f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
license: apache-2.0
tags:
- moe
model-index:
- name: MixTAO-7Bx2-MoE-v8.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.81
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.22
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.92
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 78.57
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 87.37
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.11
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=zhengr/MixTAO-7Bx2-MoE-v8.1
name: Open LLM Leaderboard
---
# MixTAO-7Bx2-MoE
MixTAO-7Bx2-MoE is a Mixture of Experts (MoE).
This model is mainly used for large model technology experiments, and increasingly perfect iterations will eventually create high-level large language models.
### Prompt Template (Alpaca)
```
### Instruction:
<prompt> (without the <>)
### Response:
```
### 🦒 Colab
| Link | Info - Model Name |
| --- | --- |
|[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1y2XmAGrQvVfbgtimTsCBO3tem735q7HZ?usp=sharing) | MixTAO-7Bx2-MoE-v8.1 |
|[mixtao-7bx2-moe-v8.1.Q4_K_M.gguf](https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-v8.1-GGUF/resolve/main/mixtao-7bx2-moe-v8.1.Q4_K_M.gguf) | GGUF of MixTAO-7Bx2-MoE-v8.1 <br> Only Q4_K_M in https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-v8.1-GGUF |
| Demo Space | https://huggingface.co/spaces/zhengr/MixTAO-7Bx2-MoE-v8.1/ |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_zhengr__MixTAO-7Bx2-MoE-v8.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |77.50|
|AI2 Reasoning Challenge (25-Shot)|73.81|
|HellaSwag (10-Shot) |89.22|
|MMLU (5-Shot) |64.92|
|TruthfulQA (0-shot) |78.57|
|Winogrande (5-shot) |87.37|
|GSM8k (5-shot) |71.11| |