File size: 2,499 Bytes
0f4ab11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
tags:
- generated_from_trainer
model-index:
- name: PomeranIAn
results: []
license: apache-2.0
language:
- code
thumbnail: >-
https://huggingface.co/mrm8488/pomeranian/resolve/main/pomeranian-removebg-preview.png
---
<div style="text-align:center;width:250px;height:250px;">
<img src="https://huggingface.co/mrm8488/pomeranian/resolve/main/pomeranian-removebg-preview.png" alt="pomeranian logo"">
</div>
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FalCoder
**Falcon-7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** with [PEFT](https://github.com/huggingface/peft) library.
## Model description
[Falcon 7B](https://huggingface.co/tiiuae/falcon-7b)
## Dataset
[CodeAlpaca_20K](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K)
## Intended uses & limitations
TBA
## Training and evaluation data
TBA
### Training hyperparameters
TBA
### Training results
TBA
### Example of usage
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer
model_id = "mrm8488/falcoder-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
def generate(
instruction,
max_new_tokens=128,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
**kwargs
):
prompt = instruction + "\n### Solution:\n"
print(prompt)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to("cuda")
attention_mask = inputs["attention_mask"].to("cuda")
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
early_stopping=True
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output.split("### Solution:")[1].lstrip("\n")
instruction = "Design a class for representing a person in Python."
print(generate(instruction))
```
|