--- tags: - generated_from_trainer model-index: - name: PomeranIAn results: [] license: apache-2.0 language: - code thumbnail: >- https://huggingface.co/mrm8488/pomeranian/resolve/main/pomeranian-removebg-preview.png ---
pomeranian logo
# FalCoder **Falcon-7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** with [PEFT](https://github.com/huggingface/peft) library. ## Model description [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b) ## Dataset [CodeAlpaca_20K](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K) ## Intended uses & limitations TBA ## Training and evaluation data TBA ### Training hyperparameters TBA ### Training results TBA ### Example of usage ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer model_id = "mrm8488/falcoder-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda") def generate( instruction, max_new_tokens=128, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, **kwargs ): prompt = instruction + "\n### Solution:\n" print(prompt) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to("cuda") attention_mask = inputs["attention_mask"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=attention_mask, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, early_stopping=True ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Solution:")[1].lstrip("\n") instruction = "Design a class for representing a person in Python." print(generate(instruction)) ```