End of training
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/muril-base-cased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: nepali_complaints_classification_muril2
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# nepali_complaints_classification_muril2
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.6391
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0003
|
38 |
+
- train_batch_size: 16
|
39 |
+
- eval_batch_size: 16
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 50
|
44 |
+
- num_epochs: 5
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
50 |
+
| 2.641 | 0.22 | 500 | 2.6403 |
|
51 |
+
| 2.6415 | 0.45 | 1000 | 2.6393 |
|
52 |
+
| 2.6399 | 0.67 | 1500 | 2.6393 |
|
53 |
+
| 2.64 | 0.89 | 2000 | 2.6395 |
|
54 |
+
| 2.6398 | 1.11 | 2500 | 2.6395 |
|
55 |
+
| 2.64 | 1.34 | 3000 | 2.6392 |
|
56 |
+
| 2.64 | 1.56 | 3500 | 2.6392 |
|
57 |
+
| 2.6387 | 1.78 | 4000 | 2.6402 |
|
58 |
+
| 2.64 | 2.01 | 4500 | 2.6391 |
|
59 |
+
| 2.6396 | 2.23 | 5000 | 2.6392 |
|
60 |
+
| 2.6394 | 2.45 | 5500 | 2.6391 |
|
61 |
+
| 2.64 | 2.67 | 6000 | 2.6392 |
|
62 |
+
| 2.6398 | 2.9 | 6500 | 2.6391 |
|
63 |
+
| 2.6395 | 3.12 | 7000 | 2.6391 |
|
64 |
+
| 2.6392 | 3.34 | 7500 | 2.6391 |
|
65 |
+
| 2.6384 | 3.57 | 8000 | 2.6394 |
|
66 |
+
| 2.6392 | 3.79 | 8500 | 2.6391 |
|
67 |
+
| 2.6392 | 4.01 | 9000 | 2.6391 |
|
68 |
+
| 2.639 | 4.23 | 9500 | 2.6391 |
|
69 |
+
| 2.6391 | 4.46 | 10000 | 2.6391 |
|
70 |
+
| 2.6391 | 4.68 | 10500 | 2.6391 |
|
71 |
+
| 2.6391 | 4.9 | 11000 | 2.6391 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.38.2
|
77 |
+
- Pytorch 2.1.0+cu121
|
78 |
+
- Datasets 2.18.0
|
79 |
+
- Tokenizers 0.15.2
|