nadika commited on
Commit
88f89b5
1 Parent(s): c1c4bd9

End of training

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/muril-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: nepali_complaints_classification_muril2
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # nepali_complaints_classification_muril2
15
+
16
+ This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 2.6391
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0003
38
+ - train_batch_size: 16
39
+ - eval_batch_size: 16
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 50
44
+ - num_epochs: 5
45
+
46
+ ### Training results
47
+
48
+ | Training Loss | Epoch | Step | Validation Loss |
49
+ |:-------------:|:-----:|:-----:|:---------------:|
50
+ | 2.641 | 0.22 | 500 | 2.6403 |
51
+ | 2.6415 | 0.45 | 1000 | 2.6393 |
52
+ | 2.6399 | 0.67 | 1500 | 2.6393 |
53
+ | 2.64 | 0.89 | 2000 | 2.6395 |
54
+ | 2.6398 | 1.11 | 2500 | 2.6395 |
55
+ | 2.64 | 1.34 | 3000 | 2.6392 |
56
+ | 2.64 | 1.56 | 3500 | 2.6392 |
57
+ | 2.6387 | 1.78 | 4000 | 2.6402 |
58
+ | 2.64 | 2.01 | 4500 | 2.6391 |
59
+ | 2.6396 | 2.23 | 5000 | 2.6392 |
60
+ | 2.6394 | 2.45 | 5500 | 2.6391 |
61
+ | 2.64 | 2.67 | 6000 | 2.6392 |
62
+ | 2.6398 | 2.9 | 6500 | 2.6391 |
63
+ | 2.6395 | 3.12 | 7000 | 2.6391 |
64
+ | 2.6392 | 3.34 | 7500 | 2.6391 |
65
+ | 2.6384 | 3.57 | 8000 | 2.6394 |
66
+ | 2.6392 | 3.79 | 8500 | 2.6391 |
67
+ | 2.6392 | 4.01 | 9000 | 2.6391 |
68
+ | 2.639 | 4.23 | 9500 | 2.6391 |
69
+ | 2.6391 | 4.46 | 10000 | 2.6391 |
70
+ | 2.6391 | 4.68 | 10500 | 2.6391 |
71
+ | 2.6391 | 4.9 | 11000 | 2.6391 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.38.2
77
+ - Pytorch 2.1.0+cu121
78
+ - Datasets 2.18.0
79
+ - Tokenizers 0.15.2