--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9382041086812458 - name: Recall type: recall value: 0.9530461124200605 - name: F1 type: f1 value: 0.9455668725997661 - name: Accuracy type: accuracy value: 0.9863130629304763 --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0632 - Precision: 0.9382 - Recall: 0.9530 - F1: 0.9456 - Accuracy: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0778 | 1.0 | 1756 | 0.0629 | 0.9111 | 0.9362 | 0.9235 | 0.9830 | | 0.0354 | 2.0 | 3512 | 0.0727 | 0.9332 | 0.9446 | 0.9389 | 0.9842 | | 0.0229 | 3.0 | 5268 | 0.0632 | 0.9382 | 0.9530 | 0.9456 | 0.9863 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1