|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch InternLM2 model.""" |
|
import math |
|
import torch.distributed as dist |
|
import queue |
|
import inspect |
|
import threading |
|
import warnings |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from einops import rearrange |
|
from torch import nn |
|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
import copy |
|
|
|
try: |
|
from transformers.generation.streamers import BaseStreamer |
|
except: |
|
BaseStreamer = None |
|
|
|
from .configuration_internlm import InternLM2Config |
|
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled |
|
from transformers.modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput |
|
from transformers.models.auto import ( |
|
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING, |
|
MODEL_FOR_CAUSAL_LM_MAPPING, |
|
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, |
|
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, |
|
MODEL_FOR_VISION_2_SEQ_MAPPING, |
|
) |
|
from transformers.utils import ExplicitEnum, ModelOutput, is_accelerate_available, logging |
|
from transformers.generation.beam_constraints import DisjunctiveConstraint, PhrasalConstraint |
|
from transformers.generation.beam_search import BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer |
|
from transformers.generation.configuration_utils import GenerationConfig |
|
from transformers.generation.logits_process import ( |
|
LogitsProcessorList |
|
) |
|
from transformers.generation.stopping_criteria import ( |
|
StoppingCriteriaList |
|
) |
|
from transformers.generation.utils import ( |
|
GenerationMode, |
|
GenerateOutput, |
|
GenerateDecoderOnlyOutput, |
|
GenerateEncoderDecoderOutput |
|
) |
|
from transformers.generation.stopping_criteria import ( |
|
StoppingCriteriaList, |
|
validate_stopping_criteria, |
|
) |
|
|
|
logger = logging.get_logger(__name__) |
|
_CONFIG_FOR_DOC = "InternLM2Config" |
|
|
|
GenerateNonBeamOutput = Union[GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput] |
|
flash_attn_func, flash_attn_varlen_func = None, None |
|
pad_input, index_first_axis, unpad_input = None, None, None |
|
def _import_flash_attn(): |
|
global flash_attn_func, flash_attn_varlen_func |
|
global pad_input, index_first_axis, unpad_input |
|
try: |
|
from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func |
|
from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input |
|
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func |
|
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input |
|
except ImportError: |
|
raise ImportError("flash_attn is not installed.") |
|
|
|
def cosine_similarity_loss_parallel(opinion, layers_to_include): |
|
total_loss = 0.0 |
|
for layer_idx in layers_to_include: |
|
current_layer = opinion[layer_idx] |
|
batch_size, seq_len, num_experts, hidden_dim = current_layer.shape |
|
norm_hidden_states = F.normalize(current_layer, p=2, dim=-1) |
|
cos_sim_matrix = torch.matmul(norm_hidden_states, norm_hidden_states.transpose(-2, -1)) |
|
upper_tri_cos_sim = torch.triu(cos_sim_matrix, diagonal=1) |
|
total_loss += upper_tri_cos_sim.sum() |
|
normalization_factor = len(layers_to_include) * batch_size * seq_len * num_experts * (num_experts - 1) / 2 |
|
return total_loss / normalization_factor |
|
|
|
def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2) -> float: |
|
r""" |
|
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. |
|
|
|
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss |
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between |
|
experts is too unbalanced. |
|
|
|
Args: |
|
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): |
|
Logits from the `gate`, should be a tuple of tensors. Shape: [batch_size, seqeunce_length, num_experts]. |
|
num_experts (`int`, *optional*): |
|
Number of experts |
|
|
|
Returns: |
|
The auxiliary loss. |
|
""" |
|
if gate_logits is None: |
|
return 0 |
|
|
|
if isinstance(gate_logits, tuple): |
|
|
|
compute_device = gate_logits[0].device |
|
gate_logits = torch.cat([gate.to(compute_device) for gate in gate_logits], dim=0) |
|
|
|
routing_weights, selected_experts = torch.topk(gate_logits, top_k, dim=-1) |
|
routing_weights = routing_weights.softmax(dim=-1) |
|
|
|
|
|
if selected_experts.dtype != torch.int64: |
|
selected_experts = selected_experts.to(torch.int64) |
|
|
|
if len(selected_experts.shape) == 2: |
|
selected_experts = selected_experts.unsqueeze(2) |
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) |
|
|
|
|
|
expert_mask = torch.max(expert_mask, axis=-2).values |
|
|
|
|
|
expert_mask = expert_mask.to(torch.float32) |
|
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2) |
|
|
|
router_prob_per_group_and_expert = torch.mean(routing_weights, axis=-1) |
|
return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert.unsqueeze(-1)) * (num_experts**2) |
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
|
|
class InternLM2RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
InternLM2RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
class InternLM2RotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
|
|
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding): |
|
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
t = t / self.scaling_factor |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
|
|
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding): |
|
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling. |
|
Credits to the Reddit users /u/bloc97 and /u/emozilla. |
|
""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors.""" |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class InternLM2BLockSparseTop2MLP(nn.Module): |
|
def __init__(self, config: InternLM2Config): |
|
super().__init__() |
|
self.intermediate_size = config.intermediate_size |
|
self.hidden_dim = config.hidden_size |
|
self.w1 = nn.Linear(self.hidden_dim, self.intermediate_size, bias=False) |
|
self.w3 = nn.Linear(self.hidden_dim, self.intermediate_size, bias=False) |
|
self.w2 = nn.Linear(self.intermediate_size, self.hidden_dim, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_states): |
|
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states) |
|
current_hidden_states = self.w2(current_hidden_states) |
|
return current_hidden_states |
|
|
|
|
|
class InternLM2MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.num_experts = config.num_local_experts |
|
self.top_k = config.num_experts_per_tok |
|
self.gate = nn.Linear(self.hidden_size, self.num_experts, bias=False) |
|
self.experts = nn.ModuleList([InternLM2BLockSparseTop2MLP(config) for _ in range(self.num_experts)]) |
|
|
|
def forward(self, hidden_states: torch.Tensor, output_expert_opinion: Optional[bool] = False, output_selected_expert: Optional[List] = None): |
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
router_logits = self.gate(hidden_states) |
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) |
|
topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False) |
|
topk_weight /= topk_weight.sum(dim=-1, keepdim=True) |
|
topk_weight = topk_weight.to(hidden_states.dtype) |
|
hidden_states = hidden_states.repeat_interleave(self.top_k, dim=0) |
|
y = torch.empty_like(hidden_states) |
|
flat_topk_idx = topk_idx.view(-1) |
|
for i in range(self.num_experts): |
|
expert = self.experts[i] |
|
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i]).to(dtype=y.dtype) |
|
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) |
|
final_hidden_states = y.reshape(batch_size, sequence_length, hidden_dim) |
|
if output_selected_expert is not None: |
|
output_selected_expert.append(flat_topk_idx) |
|
return final_hidden_states, router_logits, None |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
class InternLM2Attention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: InternLM2Config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.is_causal = True |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
self.wqkv = nn.Linear( |
|
self.hidden_size, |
|
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, |
|
bias=config.bias, |
|
) |
|
|
|
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias) |
|
self._init_rope() |
|
|
|
def _init_rope(self): |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = InternLM2RotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling["type"] |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
if scaling_type == "dynamic": |
|
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
scaling_factor=scaling_factor, |
|
) |
|
elif scaling_type == "linear": |
|
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
scaling_factor=scaling_factor, |
|
) |
|
else: |
|
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.") |
|
return self.rotary_emb |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. " |
|
"Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv_states = self.wqkv(hidden_states) |
|
|
|
qkv_states = rearrange( |
|
qkv_states, |
|
"b q (h gs d) -> b q h gs d", |
|
gs=2 + self.num_key_value_groups, |
|
d=self.head_dim, |
|
) |
|
|
|
query_states = qkv_states[..., : self.num_key_value_groups, :] |
|
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d") |
|
key_states = qkv_states[..., -2, :] |
|
value_states = qkv_states[..., -1, :] |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.wo(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
class InternLM2FlashAttention2(InternLM2Attention): |
|
""" |
|
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. " |
|
"Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
|
|
attention_mask = kwargs.pop("padding_mask") |
|
|
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv_states = self.wqkv(hidden_states) |
|
|
|
qkv_states = rearrange( |
|
qkv_states, |
|
"b q (h gs d) -> b q h gs d", |
|
gs=2 + self.num_key_value_groups, |
|
d=self.head_dim, |
|
) |
|
|
|
query_states = qkv_states[..., : self.num_key_value_groups, :] |
|
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d") |
|
key_states = qkv_states[..., -2, :] |
|
value_states = qkv_states[..., -1, :] |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, key_states, value_states, attention_mask, q_len |
|
) |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.wo(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`int`, *optional*): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
""" |
|
|
|
causal = self.is_causal and query_length != 1 |
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal |
|
) |
|
|
|
return attn_output |
|
|
|
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k |
|
) |
|
|
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q.to(torch.int64), |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
INTERNLM2_ATTENTION_CLASSES = { |
|
"eager": InternLM2Attention, |
|
"flash_attention_2": InternLM2FlashAttention2, |
|
} |
|
|
|
|
|
class InternLM2DecoderLayer(nn.Module): |
|
def __init__(self, config: InternLM2Config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config) |
|
self.feed_forward = InternLM2MLP(config) |
|
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_router_logits: Optional[bool] = False, |
|
output_expert_opinion: Optional[bool] = False, |
|
output_selected_expert: Optional[List] = None, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, |
|
query_sequence_length, key_sequence_length)` if default attention is used. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. " |
|
"Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.attention_norm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.attention( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
**kwargs, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.ffn_norm(hidden_states) |
|
hidden_states, router_logits, tok_expert_opinion = self.feed_forward(hidden_states, output_selected_expert=output_selected_expert) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
if output_router_logits: |
|
outputs += (router_logits,) |
|
|
|
if output_expert_opinion: |
|
outputs += (tok_expert_opinion,) |
|
return outputs |
|
|
|
|
|
InternLM2_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`InternLM2Config`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
|
|
@add_start_docstrings( |
|
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.", |
|
InternLM2_START_DOCSTRING, |
|
) |
|
class InternLM2PreTrainedModel(PreTrainedModel): |
|
config_class = InternLM2Config |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["InternLM2DecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
InternLM2_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or |
|
when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
|
|
@add_start_docstrings( |
|
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.", |
|
InternLM2_START_DOCSTRING, |
|
) |
|
class InternLM2Model(InternLM2PreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`] |
|
|
|
Args: |
|
config: InternLM2Config |
|
""" |
|
|
|
_auto_class = "AutoModel" |
|
|
|
def __init__(self, config: InternLM2Config): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.config = config |
|
|
|
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
|
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.tok_embeddings = value |
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
output_expert_opinion: Optional[bool] = None, |
|
output_selected_expert: Optional[List] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.attn_implementation == "flash_attention_2": |
|
_import_flash_attn() |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape[:2] |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.tok_embeddings(input_ids) |
|
|
|
if self.config.attn_implementation == "flash_attention_2": |
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
else: |
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_router_logits = () if output_router_logits else None |
|
all_expert_opinion = () if output_expert_opinion else None |
|
next_decoder_cache = () if use_cache else None |
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
output_selected_expert=output_selected_expert |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1], ) |
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
if output_router_logits: |
|
all_router_logits += (layer_outputs[-2 if output_expert_opinion else -1],) |
|
if output_expert_opinion: |
|
all_expert_opinion += (layer_outputs[-1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
|
|
class InternLM2ForCausalLM(InternLM2PreTrainedModel): |
|
_auto_class = "AutoModelForCausalLM" |
|
|
|
_tied_weights_keys = ["output.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = InternLM2Model(config) |
|
self.vocab_size = config.vocab_size |
|
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.tok_embeddings = value |
|
|
|
def get_output_embeddings(self): |
|
return self.output |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.output = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
output_expert_opinion: Optional[bool] = None, |
|
output_selected_expert: Optional[List] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM |
|
|
|
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_selected_expert=output_selected_expert, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = outputs[0] |
|
logits = self.output(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
aux_loss = None |
|
cor_loss = None |
|
if output_router_logits: |
|
aux_loss = load_balancing_loss_func( |
|
outputs.router_logits if return_dict else outputs[-1], self.num_experts, self.num_experts_per_tok |
|
) |
|
if labels is not None: |
|
loss += self.router_aux_loss_coef * aux_loss |
|
|
|
if output_expert_opinion: |
|
opinion = outputs.all_expert_opinion |
|
cor_loss= cosine_similarity_loss_parallel(opinion, list(range(int(self.num_hidden_layers * 2 / 3), self.num_hidden_layers))) |
|
cor_loss = torch.abs(cor_loss) |
|
loss += self.cor_loss_coef * cor_loss |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
if output_router_logits: |
|
output = (aux_loss,) + output |
|
return (loss,) + output if loss is not None else output |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values is not None: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction="", prefix=""): |
|
if tokenizer.add_bos_token: |
|
prompt = "" |
|
else: |
|
prompt = tokenizer.bos_token |
|
if meta_instruction: |
|
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n""" |
|
for record in history: |
|
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n""" |
|
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n""" + prefix |
|
return tokenizer([prompt], return_tensors="pt") |
|
|
|
@torch.no_grad() |
|
def chat( |
|
self, |
|
tokenizer, |
|
query: str, |
|
history: List[Tuple[str, str]] = [], |
|
streamer: Optional[BaseStreamer] = None, |
|
max_new_tokens: int = 1024, |
|
do_sample: bool = True, |
|
temperature: float = 0.8, |
|
top_p: float = 0.8, |
|
meta_instruction: str = "You are a", |
|
prefix: str = "", |
|
infer_kwargs: dict = {}, |
|
**kwargs, |
|
): |
|
inputs = self.build_inputs(tokenizer, query, history, meta_instruction, prefix) |
|
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)} |
|
|
|
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]] + kwargs.pop("custom_eos_token_id", []) |
|
outputs = self.generate( |
|
**inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
eos_token_id=eos_token_id, |
|
infer_kwargs=infer_kwargs, |
|
**kwargs, |
|
) |
|
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :] |
|
response = tokenizer.decode(outputs, skip_special_tokens=True) |
|
response = response.split("<|im_end|>")[0] |
|
history = history + [(query, response)] |
|
return response, history |
|
|
|
@torch.no_grad() |
|
def stream_chat( |
|
self, |
|
tokenizer, |
|
query: str, |
|
history: List[Tuple[str, str]] = [], |
|
max_new_tokens: int = 1024, |
|
do_sample: bool = True, |
|
temperature: float = 0.8, |
|
top_p: float = 0.8, |
|
**kwargs, |
|
): |
|
""" |
|
Return a generator in format: (response, history) |
|
Eg. |
|
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) |
|
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')]) |
|
""" |
|
if BaseStreamer is None: |
|
raise ModuleNotFoundError( |
|
"The version of `transformers` is too low. Please make sure " |
|
"that you have installed `transformers>=4.28.0`." |
|
) |
|
|
|
response_queue = queue.Queue(maxsize=20) |
|
|
|
class ChatStreamer(BaseStreamer): |
|
def __init__(self, tokenizer) -> None: |
|
super().__init__() |
|
self.tokenizer = tokenizer |
|
self.queue = response_queue |
|
self.query = query |
|
self.history = history |
|
self.response = "" |
|
self.cache = [] |
|
self.received_inputs = False |
|
self.queue.put((self.response, history + [(self.query, self.response)])) |
|
|
|
def put(self, value): |
|
if len(value.shape) > 1 and value.shape[0] > 1: |
|
raise ValueError("ChatStreamer only supports batch size 1") |
|
elif len(value.shape) > 1: |
|
value = value[0] |
|
|
|
if not self.received_inputs: |
|
|
|
self.received_inputs = True |
|
return |
|
|
|
self.cache.extend(value.tolist()) |
|
token = self.tokenizer.decode(self.cache, skip_special_tokens=True) |
|
if token.strip() != "<|im_end|>": |
|
self.response = self.response + token |
|
history = self.history + [(self.query, self.response)] |
|
self.queue.put((self.response, history)) |
|
self.cache = [] |
|
else: |
|
self.end() |
|
|
|
def end(self): |
|
self.queue.put(None) |
|
|
|
def stream_producer(): |
|
return self.chat( |
|
tokenizer=tokenizer, |
|
query=query, |
|
streamer=ChatStreamer(tokenizer=tokenizer), |
|
history=history, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
**kwargs, |
|
) |
|
|
|
def consumer(): |
|
producer = threading.Thread(target=stream_producer) |
|
producer.start() |
|
while True: |
|
res = response_queue.get() |
|
if res is None: |
|
return |
|
yield res |
|
|
|
return consumer() |
|
|
|
def greedy_search( |
|
self, |
|
input_ids: torch.LongTensor, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
max_length: Optional[int] = None, |
|
pad_token_id: Optional[int] = None, |
|
eos_token_id: Optional[Union[int, List[int]]] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_scores: Optional[bool] = None, |
|
return_dict_in_generate: Optional[bool] = None, |
|
synced_gpus: bool = False, |
|
streamer: Optional["BaseStreamer"] = None, |
|
infer_kwargs: dict = {}, |
|
**model_kwargs, |
|
) -> Union[GenerateNonBeamOutput, torch.LongTensor]: |
|
r""" |
|
Generates sequences of token ids for models with a language modeling head using **greedy decoding** and can be |
|
used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. |
|
|
|
<Tip warning={true}> |
|
|
|
In most cases, you do not need to call [`~generation.GenerationMixin.greedy_search`] directly. Use generate() |
|
instead. For an overview of generation strategies and code examples, check the [following |
|
guide](../generation_strategies). |
|
|
|
</Tip> |
|
|
|
|
|
Parameters: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
The sequence used as a prompt for the generation. |
|
logits_processor (`LogitsProcessorList`, *optional*): |
|
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] |
|
used to modify the prediction scores of the language modeling head applied at each generation step. |
|
stopping_criteria (`StoppingCriteriaList`, *optional*): |
|
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] |
|
used to tell if the generation loop should stop. |
|
|
|
max_length (`int`, *optional*, defaults to 20): |
|
**DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated |
|
tokens. The maximum length of the sequence to be generated. |
|
pad_token_id (`int`, *optional*): |
|
The id of the *padding* token. |
|
eos_token_id (`Union[int, List[int]]`, *optional*): |
|
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. |
|
output_attentions (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more details. |
|
output_hidden_states (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more details. |
|
output_scores (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return the prediction scores. See `scores` under returned tensors for more details. |
|
return_dict_in_generate (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
synced_gpus (`bool`, *optional*, defaults to `False`): |
|
Whether to continue running the while loop until max_length (needed for ZeRO stage 3) |
|
streamer (`BaseStreamer`, *optional*): |
|
Streamer object that will be used to stream the generated sequences. Generated tokens are passed |
|
through `streamer.put(token_ids)` and the streamer is responsible for any further processing. |
|
model_kwargs: |
|
Additional model specific keyword arguments will be forwarded to the `forward` function of the model. |
|
If model is an encoder-decoder model the kwargs should include `encoder_outputs`. |
|
|
|
Return: |
|
[`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or |
|
`torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a |
|
[`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and |
|
`return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if |
|
`model.config.is_encoder_decoder=True`. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import ( |
|
... AutoTokenizer, |
|
... AutoModelForCausalLM, |
|
... LogitsProcessorList, |
|
... MinLengthLogitsProcessor, |
|
... StoppingCriteriaList, |
|
... MaxLengthCriteria, |
|
... ) |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2") |
|
>>> model = AutoModelForCausalLM.from_pretrained("gpt2") |
|
|
|
>>> # set pad_token_id to eos_token_id because GPT2 does not have a PAD token |
|
>>> model.generation_config.pad_token_id = model.generation_config.eos_token_id |
|
|
|
>>> input_prompt = "It might be possible to" |
|
>>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids |
|
|
|
>>> # instantiate logits processors |
|
>>> logits_processor = LogitsProcessorList( |
|
... [ |
|
... MinLengthLogitsProcessor(10, eos_token_id=model.generation_config.eos_token_id), |
|
... ] |
|
... ) |
|
>>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)]) |
|
|
|
>>> outputs = model.greedy_search( |
|
... input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria |
|
... ) |
|
|
|
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
["It might be possible to get a better understanding of the nature of the problem, but it's not"] |
|
```""" |
|
|
|
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() |
|
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() |
|
if max_length is not None: |
|
warnings.warn( |
|
"`max_length` is deprecated in this function, use" |
|
" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.", |
|
UserWarning, |
|
) |
|
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length) |
|
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id |
|
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id |
|
if isinstance(eos_token_id, int): |
|
eos_token_id = [eos_token_id] |
|
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None |
|
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores |
|
output_attentions = ( |
|
output_attentions if output_attentions is not None else self.generation_config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states |
|
) |
|
return_dict_in_generate = ( |
|
return_dict_in_generate |
|
if return_dict_in_generate is not None |
|
else self.generation_config.return_dict_in_generate |
|
) |
|
|
|
|
|
scores = () if (return_dict_in_generate and output_scores) else None |
|
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None |
|
cross_attentions = () if (return_dict_in_generate and output_attentions) else None |
|
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None |
|
|
|
|
|
if return_dict_in_generate and self.config.is_encoder_decoder: |
|
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None |
|
encoder_hidden_states = ( |
|
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None |
|
) |
|
|
|
|
|
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device) |
|
|
|
this_peer_finished = False |
|
while True: |
|
if synced_gpus: |
|
|
|
|
|
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device) |
|
|
|
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM) |
|
|
|
if this_peer_finished_flag.item() == 0.0: |
|
break |
|
|
|
|
|
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) |
|
|
|
|
|
outputs = self( |
|
**model_inputs, |
|
**infer_kwargs, |
|
return_dict=True, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
if synced_gpus and this_peer_finished: |
|
continue |
|
|
|
next_token_logits = outputs.logits[:, -1, :] |
|
|
|
|
|
next_tokens_scores = logits_processor(input_ids, next_token_logits) |
|
|
|
|
|
if return_dict_in_generate: |
|
if output_scores: |
|
scores += (next_tokens_scores,) |
|
if output_attentions: |
|
decoder_attentions += ( |
|
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) |
|
) |
|
if self.config.is_encoder_decoder: |
|
cross_attentions += (outputs.cross_attentions,) |
|
|
|
if output_hidden_states: |
|
decoder_hidden_states += ( |
|
(outputs.decoder_hidden_states,) |
|
if self.config.is_encoder_decoder |
|
else (outputs.hidden_states,) |
|
) |
|
|
|
|
|
next_tokens = torch.argmax(next_tokens_scores, dim=-1) |
|
|
|
|
|
if eos_token_id is not None: |
|
if pad_token_id is None: |
|
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.") |
|
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) |
|
|
|
|
|
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) |
|
if streamer is not None: |
|
streamer.put(next_tokens.cpu()) |
|
model_kwargs = self._update_model_kwargs_for_generation( |
|
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder |
|
) |
|
|
|
|
|
if eos_token_id_tensor is not None: |
|
unfinished_sequences = unfinished_sequences.mul( |
|
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0) |
|
) |
|
|
|
|
|
if unfinished_sequences.max() == 0: |
|
this_peer_finished = True |
|
|
|
|
|
if stopping_criteria(input_ids, scores): |
|
this_peer_finished = True |
|
|
|
if this_peer_finished and not synced_gpus: |
|
break |
|
|
|
if streamer is not None: |
|
streamer.end() |
|
|
|
if return_dict_in_generate: |
|
if self.config.is_encoder_decoder: |
|
return GenerateEncoderDecoderOutput( |
|
sequences=input_ids, |
|
scores=scores, |
|
encoder_attentions=encoder_attentions, |
|
encoder_hidden_states=encoder_hidden_states, |
|
decoder_attentions=decoder_attentions, |
|
cross_attentions=cross_attentions, |
|
decoder_hidden_states=decoder_hidden_states, |
|
past_key_values=model_kwargs.get("past_key_values"), |
|
) |
|
else: |
|
return GenerateDecoderOnlyOutput( |
|
sequences=input_ids, |
|
scores=scores, |
|
attentions=decoder_attentions, |
|
hidden_states=decoder_hidden_states, |
|
past_key_values=model_kwargs.get("past_key_values"), |
|
) |
|
else: |
|
return input_ids |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, |
|
synced_gpus: Optional[bool] = None, |
|
assistant_model: Optional["PreTrainedModel"] = None, |
|
streamer: Optional["BaseStreamer"] = None, |
|
negative_prompt_ids: Optional[torch.Tensor] = None, |
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None, |
|
infer_kwargs: dict = {}, |
|
**kwargs, |
|
) -> Union[GenerateOutput, torch.LongTensor]: |
|
r""" |
|
|
|
Generates sequences of token ids for models with a language modeling head. |
|
|
|
<Tip warning={true}> |
|
|
|
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the |
|
model's default generation configuration. You can override any `generation_config` by passing the corresponding |
|
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. |
|
|
|
For an overview of generation strategies and code examples, check out the [following |
|
guide](../generation_strategies). |
|
|
|
</Tip> |
|
|
|
Parameters: |
|
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): |
|
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the |
|
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` |
|
should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of |
|
`input_ids`, `input_values`, `input_features`, or `pixel_values`. |
|
generation_config (`~generation.GenerationConfig`, *optional*): |
|
The generation configuration to be used as base parametrization for the generation call. `**kwargs` |
|
passed to generate matching the attributes of `generation_config` will override them. If |
|
`generation_config` is not provided, the default will be used, which had the following loading |
|
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model |
|
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s |
|
default values, whose documentation should be checked to parameterize generation. |
|
logits_processor (`LogitsProcessorList`, *optional*): |
|
Custom logits processors that complement the default logits processors built from arguments and |
|
generation config. If a logit processor is passed that is already created with the arguments or a |
|
generation config an error is thrown. This feature is intended for advanced users. |
|
stopping_criteria (`StoppingCriteriaList`, *optional*): |
|
Custom stopping criteria that complement the default stopping criteria built from arguments and a |
|
generation config. If a stopping criteria is passed that is already created with the arguments or a |
|
generation config an error is thrown. If your stopping criteria depends on the `scores` input, make |
|
sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. This feature is |
|
intended for advanced users. |
|
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): |
|
If provided, this function constraints the beam search to allowed tokens only at each step. If not |
|
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and |
|
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned |
|
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful |
|
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity |
|
Retrieval](https://arxiv.org/abs/2010.00904). |
|
synced_gpus (`bool`, *optional*): |
|
Whether to continue running the while loop until max_length. Unless overridden this flag will be set to |
|
`True` under DeepSpeed ZeRO Stage 3 multiple GPUs environment to avoid hanging if one GPU finished |
|
generating before other GPUs. Otherwise it'll be set to `False`. |
|
assistant_model (`PreTrainedModel`, *optional*): |
|
An assistant model that can be used to accelerate generation. The assistant model must have the exact |
|
same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistent model |
|
is much faster than running generation with the model you're calling generate from. As such, the |
|
assistant model should be much smaller. |
|
streamer (`BaseStreamer`, *optional*): |
|
Streamer object that will be used to stream the generated sequences. Generated tokens are passed |
|
through `streamer.put(token_ids)` and the streamer is responsible for any further processing. |
|
negative_prompt_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
The negative prompt needed for some processors such as CFG. The batch size must match the input batch |
|
size. This is an experimental feature, subject to breaking API changes in future versions. |
|
negative_prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Attention_mask for `negative_prompt_ids`. |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be |
|
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder |
|
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. |
|
|
|
Return: |
|
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` |
|
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. |
|
|
|
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible |
|
[`~utils.ModelOutput`] types are: |
|
|
|
- [`~generation.GenerateDecoderOnlyOutput`], |
|
- [`~generation.GenerateBeamDecoderOnlyOutput`] |
|
|
|
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible |
|
[`~utils.ModelOutput`] types are: |
|
|
|
- [`~generation.GenerateEncoderDecoderOutput`], |
|
- [`~generation.GenerateBeamEncoderDecoderOutput`] |
|
""" |
|
|
|
if synced_gpus is None: |
|
if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1: |
|
synced_gpus = True |
|
else: |
|
synced_gpus = False |
|
|
|
|
|
self._validate_model_class() |
|
|
|
|
|
if generation_config is None: |
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
self.generation_config._from_model_config |
|
and self.generation_config._original_object_hash == hash(self.generation_config) |
|
and self.config._has_non_default_generation_parameters() |
|
): |
|
new_generation_config = GenerationConfig.from_model_config(self.config) |
|
if new_generation_config != self.generation_config: |
|
warnings.warn( |
|
"You have modified the pretrained model configuration to control generation. This is a" |
|
" deprecated strategy to control generation and will be removed soon, in a future version." |
|
" Please use and modify the model generation configuration (see" |
|
" https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )" |
|
) |
|
self.generation_config = new_generation_config |
|
generation_config = self.generation_config |
|
|
|
generation_config = copy.deepcopy(generation_config) |
|
model_kwargs = generation_config.update(**kwargs) |
|
generation_config.validate() |
|
self._validate_model_kwargs(model_kwargs.copy()) |
|
|
|
|
|
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() |
|
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() |
|
|
|
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: |
|
if model_kwargs.get("attention_mask", None) is None: |
|
logger.warning( |
|
"The attention mask and the pad token id were not set. As a consequence, you may observe " |
|
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." |
|
) |
|
eos_token_id = generation_config.eos_token_id |
|
if isinstance(eos_token_id, list): |
|
eos_token_id = eos_token_id[0] |
|
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") |
|
generation_config.pad_token_id = eos_token_id |
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( |
|
inputs, generation_config.bos_token_id, model_kwargs |
|
) |
|
batch_size = inputs_tensor.shape[0] |
|
|
|
|
|
model_kwargs["output_attentions"] = generation_config.output_attentions |
|
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states |
|
|
|
|
|
if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds": |
|
model_kwargs["use_cache"] = True |
|
else: |
|
model_kwargs["use_cache"] = generation_config.use_cache |
|
|
|
accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys()) |
|
requires_attention_mask = "encoder_outputs" not in model_kwargs |
|
|
|
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask: |
|
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( |
|
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id |
|
) |
|
|
|
|
|
if not self.config.is_encoder_decoder: |
|
|
|
|
|
if ( |
|
generation_config.pad_token_id is not None |
|
and len(inputs_tensor.shape) == 2 |
|
and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0 |
|
): |
|
logger.warning( |
|
"A decoder-only architecture is being used, but right-padding was detected! For correct " |
|
"generation results, please set `padding_side='left'` when initializing the tokenizer." |
|
) |
|
|
|
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs: |
|
|
|
|
|
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation( |
|
inputs_tensor, model_kwargs, model_input_name |
|
) |
|
|
|
|
|
if self.config.is_encoder_decoder: |
|
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( |
|
batch_size=batch_size, |
|
model_input_name=model_input_name, |
|
model_kwargs=model_kwargs, |
|
decoder_start_token_id=generation_config.decoder_start_token_id, |
|
bos_token_id=generation_config.bos_token_id, |
|
device=inputs_tensor.device, |
|
) |
|
else: |
|
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids") |
|
|
|
if streamer is not None: |
|
streamer.put(input_ids.cpu()) |
|
|
|
|
|
input_ids_length = input_ids.shape[-1] |
|
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None |
|
if generation_config.max_new_tokens is not None: |
|
if not has_default_max_length and generation_config.max_length is not None: |
|
logger.warning( |
|
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" |
|
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " |
|
"Please refer to the documentation for more information. " |
|
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" |
|
) |
|
generation_config.max_length = generation_config.max_new_tokens + input_ids_length |
|
self._validate_generated_length(generation_config, input_ids_length, has_default_max_length) |
|
|
|
|
|
generation_mode = self._get_generation_mode(generation_config, assistant_model) |
|
|
|
if streamer is not None and (generation_config.num_beams > 1): |
|
raise ValueError( |
|
"`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1." |
|
) |
|
|
|
if self.device.type != input_ids.device.type: |
|
warnings.warn( |
|
"You are calling .generate() with the `input_ids` being on a device type different" |
|
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model" |
|
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation." |
|
" Please make sure that you have put `input_ids` to the" |
|
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before" |
|
" running `.generate()`.", |
|
UserWarning, |
|
) |
|
|
|
|
|
prepared_logits_processor = self._get_logits_processor( |
|
generation_config=generation_config, |
|
input_ids_seq_length=input_ids_length, |
|
encoder_input_ids=inputs_tensor, |
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, |
|
logits_processor=logits_processor, |
|
model_kwargs=model_kwargs, |
|
negative_prompt_ids=negative_prompt_ids, |
|
negative_prompt_attention_mask=negative_prompt_attention_mask, |
|
) |
|
|
|
|
|
prepared_stopping_criteria = self._get_stopping_criteria( |
|
generation_config=generation_config, stopping_criteria=stopping_criteria |
|
) |
|
|
|
if generation_mode == GenerationMode.ASSISTED_GENERATION: |
|
if generation_config.num_return_sequences > 1: |
|
raise ValueError( |
|
"num_return_sequences has to be 1 when doing assisted generate, " |
|
f"but is {generation_config.num_return_sequences}." |
|
) |
|
if batch_size > 1: |
|
raise ValueError("assisted generate is only supported for batch_size = 1") |
|
if not model_kwargs["use_cache"]: |
|
raise ValueError("assisted generate requires `use_cache=True`") |
|
|
|
|
|
candidate_generator = self._get_candidate_generator( |
|
generation_config=generation_config, |
|
input_ids=input_ids, |
|
inputs_tensor=inputs_tensor, |
|
assistant_model=assistant_model, |
|
logits_processor=logits_processor, |
|
model_kwargs=model_kwargs, |
|
) |
|
|
|
|
|
return self.assisted_decoding( |
|
input_ids, |
|
candidate_generator=candidate_generator, |
|
do_sample=generation_config.do_sample, |
|
logits_processor=prepared_logits_processor, |
|
logits_warper=self._get_logits_warper(generation_config) if generation_config.do_sample else None, |
|
stopping_criteria=prepared_stopping_criteria, |
|
pad_token_id=generation_config.pad_token_id, |
|
eos_token_id=generation_config.eos_token_id, |
|
output_scores=generation_config.output_scores, |
|
return_dict_in_generate=generation_config.return_dict_in_generate, |
|
synced_gpus=synced_gpus, |
|
streamer=streamer, |
|
**model_kwargs, |
|
) |
|
if generation_mode == GenerationMode.GREEDY_SEARCH: |
|
|
|
return self.greedy_search( |
|
input_ids, |
|
logits_processor=prepared_logits_processor, |
|
stopping_criteria=prepared_stopping_criteria, |
|
pad_token_id=generation_config.pad_token_id, |
|
eos_token_id=generation_config.eos_token_id, |
|
output_scores=generation_config.output_scores, |
|
return_dict_in_generate=generation_config.return_dict_in_generate, |
|
synced_gpus=synced_gpus, |
|
streamer=streamer, |
|
infer_kwargs=infer_kwargs, |
|
**model_kwargs, |
|
) |
|
|
|
elif generation_mode == GenerationMode.CONTRASTIVE_SEARCH: |
|
if not model_kwargs["use_cache"]: |
|
raise ValueError("Contrastive search requires `use_cache=True`") |
|
|
|
return self.contrastive_search( |
|
input_ids, |
|
top_k=generation_config.top_k, |
|
penalty_alpha=generation_config.penalty_alpha, |
|
logits_processor=prepared_logits_processor, |
|
stopping_criteria=prepared_stopping_criteria, |
|
pad_token_id=generation_config.pad_token_id, |
|
eos_token_id=generation_config.eos_token_id, |
|
output_scores=generation_config.output_scores, |
|
return_dict_in_generate=generation_config.return_dict_in_generate, |
|
synced_gpus=synced_gpus, |
|
streamer=streamer, |
|
sequential=generation_config.low_memory, |
|
**model_kwargs, |
|
) |
|
|
|
elif generation_mode == GenerationMode.SAMPLE: |
|
|
|
logits_warper = self._get_logits_warper(generation_config) |
|
|
|
|
|
input_ids, model_kwargs = self._expand_inputs_for_generation( |
|
input_ids=input_ids, |
|
expand_size=generation_config.num_return_sequences, |
|
is_encoder_decoder=self.config.is_encoder_decoder, |
|
**model_kwargs, |
|
) |
|
|
|
|
|
return self.sample( |
|
input_ids, |
|
logits_processor=prepared_logits_processor, |
|
logits_warper=logits_warper, |
|
stopping_criteria=prepared_stopping_criteria, |
|
pad_token_id=generation_config.pad_token_id, |
|
eos_token_id=generation_config.eos_token_id, |
|
output_scores=generation_config.output_scores, |
|
return_dict_in_generate=generation_config.return_dict_in_generate, |
|
synced_gpus=synced_gpus, |
|
streamer=streamer, |
|
**model_kwargs |
|
) |
|
|
|
elif generation_mode == GenerationMode.BEAM_SEARCH: |
|
|
|
beam_scorer = BeamSearchScorer( |
|
batch_size=batch_size, |
|
num_beams=generation_config.num_beams, |
|
device=inputs_tensor.device, |
|
length_penalty=generation_config.length_penalty, |
|
do_early_stopping=generation_config.early_stopping, |
|
num_beam_hyps_to_keep=generation_config.num_return_sequences, |
|
max_length=generation_config.max_length, |
|
) |
|
|
|
input_ids, model_kwargs = self._expand_inputs_for_generation( |
|
input_ids=input_ids, |
|
expand_size=generation_config.num_beams, |
|
is_encoder_decoder=self.config.is_encoder_decoder, |
|
**model_kwargs, |
|
) |
|
|
|
return self.beam_search( |
|
input_ids, |
|
beam_scorer, |
|
logits_processor=prepared_logits_processor, |
|
stopping_criteria=prepared_stopping_criteria, |
|
pad_token_id=generation_config.pad_token_id, |
|
eos_token_id=generation_config.eos_token_id, |
|
output_scores=generation_config.output_scores, |
|
return_dict_in_generate=generation_config.return_dict_in_generate, |
|
synced_gpus=synced_gpus, |
|
**model_kwargs, |
|
) |
|
|
|
elif generation_mode == GenerationMode.BEAM_SAMPLE: |
|
|
|
logits_warper = self._get_logits_warper(generation_config) |
|
|
|
|
|
beam_scorer = BeamSearchScorer( |
|
batch_size=batch_size, |
|
num_beams=generation_config.num_beams, |
|
device=inputs_tensor.device, |
|
length_penalty=generation_config.length_penalty, |
|
do_early_stopping=generation_config.early_stopping, |
|
num_beam_hyps_to_keep=generation_config.num_return_sequences, |
|
max_length=generation_config.max_length, |
|
) |
|
|
|
|
|
input_ids, model_kwargs = self._expand_inputs_for_generation( |
|
input_ids=input_ids, |
|
expand_size=generation_config.num_beams, |
|
is_encoder_decoder=self.config.is_encoder_decoder, |
|
**model_kwargs, |
|
) |
|
|
|
|
|
return self.beam_sample( |
|
input_ids, |
|
beam_scorer, |
|
logits_processor=prepared_logits_processor, |
|
logits_warper=logits_warper, |
|
stopping_criteria=prepared_stopping_criteria, |
|
pad_token_id=generation_config.pad_token_id, |
|
eos_token_id=generation_config.eos_token_id, |
|
output_scores=generation_config.output_scores, |
|
return_dict_in_generate=generation_config.return_dict_in_generate, |
|
synced_gpus=synced_gpus, |
|
**model_kwargs, |
|
) |
|
|
|
elif generation_mode == GenerationMode.GROUP_BEAM_SEARCH: |
|
|
|
beam_scorer = BeamSearchScorer( |
|
batch_size=batch_size, |
|
num_beams=generation_config.num_beams, |
|
device=inputs_tensor.device, |
|
length_penalty=generation_config.length_penalty, |
|
do_early_stopping=generation_config.early_stopping, |
|
num_beam_hyps_to_keep=generation_config.num_return_sequences, |
|
num_beam_groups=generation_config.num_beam_groups, |
|
max_length=generation_config.max_length, |
|
) |
|
|
|
input_ids, model_kwargs = self._expand_inputs_for_generation( |
|
input_ids=input_ids, |
|
expand_size=generation_config.num_beams, |
|
is_encoder_decoder=self.config.is_encoder_decoder, |
|
**model_kwargs, |
|
) |
|
|
|
return self.group_beam_search( |
|
input_ids, |
|
beam_scorer, |
|
logits_processor=prepared_logits_processor, |
|
stopping_criteria=prepared_stopping_criteria, |
|
pad_token_id=generation_config.pad_token_id, |
|
eos_token_id=generation_config.eos_token_id, |
|
output_scores=generation_config.output_scores, |
|
return_dict_in_generate=generation_config.return_dict_in_generate, |
|
synced_gpus=synced_gpus, |
|
**model_kwargs, |
|
) |
|
|
|
elif generation_mode == GenerationMode.CONSTRAINED_BEAM_SEARCH: |
|
final_constraints = [] |
|
if generation_config.constraints is not None: |
|
final_constraints = generation_config.constraints |
|
|
|
if generation_config.force_words_ids is not None: |
|
|
|
def typeerror(): |
|
raise ValueError( |
|
"`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]` " |
|
f"of positive integers, but is {generation_config.force_words_ids}." |
|
) |
|
|
|
if ( |
|
not isinstance(generation_config.force_words_ids, list) |
|
or len(generation_config.force_words_ids) == 0 |
|
): |
|
typeerror() |
|
|
|
for word_ids in generation_config.force_words_ids: |
|
if isinstance(word_ids[0], list): |
|
if not isinstance(word_ids, list) or len(word_ids) == 0: |
|
typeerror() |
|
if any(not isinstance(token_ids, list) for token_ids in word_ids): |
|
typeerror() |
|
if any( |
|
any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids) |
|
for token_ids in word_ids |
|
): |
|
typeerror() |
|
|
|
constraint = DisjunctiveConstraint(word_ids) |
|
else: |
|
if not isinstance(word_ids, list) or len(word_ids) == 0: |
|
typeerror() |
|
if any((not isinstance(token_id, int) or token_id < 0) for token_id in word_ids): |
|
typeerror() |
|
|
|
constraint = PhrasalConstraint(word_ids) |
|
final_constraints.append(constraint) |
|
|
|
|
|
constrained_beam_scorer = ConstrainedBeamSearchScorer( |
|
constraints=final_constraints, |
|
batch_size=batch_size, |
|
num_beams=generation_config.num_beams, |
|
device=inputs_tensor.device, |
|
length_penalty=generation_config.length_penalty, |
|
do_early_stopping=generation_config.early_stopping, |
|
num_beam_hyps_to_keep=generation_config.num_return_sequences, |
|
max_length=generation_config.max_length, |
|
) |
|
|
|
input_ids, model_kwargs = self._expand_inputs_for_generation( |
|
input_ids=input_ids, |
|
expand_size=generation_config.num_beams, |
|
is_encoder_decoder=self.config.is_encoder_decoder, |
|
**model_kwargs, |
|
) |
|
|
|
return self.constrained_beam_search( |
|
input_ids, |
|
constrained_beam_scorer=constrained_beam_scorer, |
|
logits_processor=prepared_logits_processor, |
|
stopping_criteria=prepared_stopping_criteria, |
|
pad_token_id=generation_config.pad_token_id, |
|
eos_token_id=generation_config.eos_token_id, |
|
output_scores=generation_config.output_scores, |
|
return_dict_in_generate=generation_config.return_dict_in_generate, |
|
synced_gpus=synced_gpus, |
|
**model_kwargs, |
|
) |
|
|
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The InternLM2 Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, |
|
as other causal models (e.g. GPT-2) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
InternLM2_START_DOCSTRING, |
|
) |
|
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = InternLM2Model(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.tok_embeddings = value |
|
|
|
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to( |
|
logits.device |
|
) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|