File size: 2,252 Bytes
24aa96d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
base_model: google/muril-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: temp_assamese
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# temp_assamese
This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4149
- Accuracy: 0.7014
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|
| 2.2163 | 0.1409 | 2000 | 1.8646 | 0.6320 |
| 1.9456 | 0.2818 | 4000 | 1.7492 | 0.6495 |
| 1.8391 | 0.4227 | 6000 | 1.6770 | 0.6606 |
| 1.7704 | 0.5637 | 8000 | 1.6166 | 0.6707 |
| 1.7213 | 0.7046 | 10000 | 1.5818 | 0.6759 |
| 1.6802 | 0.8455 | 12000 | 1.5403 | 0.6820 |
| 1.6432 | 0.9864 | 14000 | 1.5153 | 0.6858 |
| 1.6074 | 1.1273 | 16000 | 1.4965 | 0.6885 |
| 1.5833 | 1.2682 | 18000 | 1.4678 | 0.6934 |
| 1.5649 | 1.4091 | 20000 | 1.4508 | 0.6950 |
| 1.553 | 1.5501 | 22000 | 1.4367 | 0.6985 |
| 1.5345 | 1.6910 | 24000 | 1.4231 | 0.7001 |
| 1.5261 | 1.8319 | 26000 | 1.4157 | 0.7013 |
| 1.5148 | 1.9728 | 28000 | 1.4098 | 0.7027 |
### Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|