File size: 23,954 Bytes
0f9e661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import os
import gc
import copy
import lpips
import torch
import wandb
from glob import glob
import numpy as np
from accelerate import Accelerator
from accelerate.utils import set_seed
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, CLIPTextModel
from diffusers.optimization import get_scheduler
from peft.utils import get_peft_model_state_dict
from cleanfid.fid import get_folder_features, build_feature_extractor, frechet_distance
import vision_aided_loss
from model import make_1step_sched
from cyclegan_turbo import CycleGAN_Turbo, VAE_encode, VAE_decode, initialize_unet, initialize_vae
from my_utils.training_utils import UnpairedDataset, build_transform, parse_args_unpaired_training
from my_utils.dino_struct import DinoStructureLoss


def main(args):
    accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, log_with=args.report_to)
    set_seed(args.seed)

    if accelerator.is_main_process:
        os.makedirs(os.path.join(args.output_dir, "checkpoints"), exist_ok=True)

    tokenizer = AutoTokenizer.from_pretrained("stabilityai/sd-turbo", subfolder="tokenizer", revision=args.revision, use_fast=False,)
    noise_scheduler_1step = make_1step_sched()
    text_encoder = CLIPTextModel.from_pretrained("stabilityai/sd-turbo", subfolder="text_encoder").cuda()

    unet, l_modules_unet_encoder, l_modules_unet_decoder, l_modules_unet_others = initialize_unet(args.lora_rank_unet, return_lora_module_names=True)
    vae_a2b, vae_lora_target_modules = initialize_vae(args.lora_rank_vae, return_lora_module_names=True)

    weight_dtype = torch.float32
    vae_a2b.to(accelerator.device, dtype=weight_dtype)
    text_encoder.to(accelerator.device, dtype=weight_dtype)
    unet.to(accelerator.device, dtype=weight_dtype)
    text_encoder.requires_grad_(False)

    if args.gan_disc_type == "vagan_clip":
        net_disc_a = vision_aided_loss.Discriminator(cv_type='clip', loss_type=args.gan_loss_type, device="cuda")
        net_disc_a.cv_ensemble.requires_grad_(False)  # Freeze feature extractor
        net_disc_b = vision_aided_loss.Discriminator(cv_type='clip', loss_type=args.gan_loss_type, device="cuda")
        net_disc_b.cv_ensemble.requires_grad_(False)  # Freeze feature extractor

    crit_cycle, crit_idt = torch.nn.L1Loss(), torch.nn.L1Loss()

    if args.enable_xformers_memory_efficient_attention:
        unet.enable_xformers_memory_efficient_attention()

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    unet.conv_in.requires_grad_(True)
    vae_b2a = copy.deepcopy(vae_a2b)
    params_gen = CycleGAN_Turbo.get_traininable_params(unet, vae_a2b, vae_b2a)

    vae_enc = VAE_encode(vae_a2b, vae_b2a=vae_b2a)
    vae_dec = VAE_decode(vae_a2b, vae_b2a=vae_b2a)

    optimizer_gen = torch.optim.AdamW(params_gen, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay, eps=args.adam_epsilon,)

    params_disc = list(net_disc_a.parameters()) + list(net_disc_b.parameters())
    optimizer_disc = torch.optim.AdamW(params_disc, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay, eps=args.adam_epsilon,)

    dataset_train = UnpairedDataset(dataset_folder=args.dataset_folder, image_prep=args.train_img_prep, split="train", tokenizer=tokenizer)
    train_dataloader = torch.utils.data.DataLoader(dataset_train, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers)
    T_val = build_transform(args.val_img_prep)
    fixed_caption_src = dataset_train.fixed_caption_src
    fixed_caption_tgt = dataset_train.fixed_caption_tgt
    l_images_src_test = []
    for ext in ["*.jpg", "*.jpeg", "*.png", "*.bmp"]:
        l_images_src_test.extend(glob(os.path.join(args.dataset_folder, "test_A", ext)))
    l_images_tgt_test = []
    for ext in ["*.jpg", "*.jpeg", "*.png", "*.bmp"]:
        l_images_tgt_test.extend(glob(os.path.join(args.dataset_folder, "test_B", ext)))
    l_images_src_test, l_images_tgt_test = sorted(l_images_src_test), sorted(l_images_tgt_test)

    # make the reference FID statistics
    if accelerator.is_main_process:
        feat_model = build_feature_extractor("clean", "cuda", use_dataparallel=False)
        """
        FID reference statistics for A -> B translation
        """
        output_dir_ref = os.path.join(args.output_dir, "fid_reference_a2b")
        os.makedirs(output_dir_ref, exist_ok=True)
        # transform all images according to the validation transform and save them
        for _path in tqdm(l_images_tgt_test):
            _img = T_val(Image.open(_path).convert("RGB"))
            outf = os.path.join(output_dir_ref, os.path.basename(_path)).replace(".jpg", ".png")
            if not os.path.exists(outf):
                _img.save(outf)
        # compute the features for the reference images
        ref_features = get_folder_features(output_dir_ref, model=feat_model, num_workers=0, num=None,
                        shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
                        mode="clean", custom_fn_resize=None, description="", verbose=True,
                        custom_image_tranform=None)
        a2b_ref_mu, a2b_ref_sigma = np.mean(ref_features, axis=0), np.cov(ref_features, rowvar=False)
        """
        FID reference statistics for B -> A translation
        """
        # transform all images according to the validation transform and save them
        output_dir_ref = os.path.join(args.output_dir, "fid_reference_b2a")
        os.makedirs(output_dir_ref, exist_ok=True)
        for _path in tqdm(l_images_src_test):
            _img = T_val(Image.open(_path).convert("RGB"))
            outf = os.path.join(output_dir_ref, os.path.basename(_path)).replace(".jpg", ".png")
            if not os.path.exists(outf):
                _img.save(outf)
        # compute the features for the reference images
        ref_features = get_folder_features(output_dir_ref, model=feat_model, num_workers=0, num=None,
                        shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
                        mode="clean", custom_fn_resize=None, description="", verbose=True,
                        custom_image_tranform=None)
        b2a_ref_mu, b2a_ref_sigma = np.mean(ref_features, axis=0), np.cov(ref_features, rowvar=False)

    lr_scheduler_gen = get_scheduler(args.lr_scheduler, optimizer=optimizer_gen,
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
        num_cycles=args.lr_num_cycles, power=args.lr_power)
    lr_scheduler_disc = get_scheduler(args.lr_scheduler, optimizer=optimizer_disc,
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
        num_cycles=args.lr_num_cycles, power=args.lr_power)

    net_lpips = lpips.LPIPS(net='vgg')
    net_lpips.cuda()
    net_lpips.requires_grad_(False)

    fixed_a2b_tokens = tokenizer(fixed_caption_tgt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt").input_ids[0]
    fixed_a2b_emb_base = text_encoder(fixed_a2b_tokens.cuda().unsqueeze(0))[0].detach()
    fixed_b2a_tokens = tokenizer(fixed_caption_src, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt").input_ids[0]
    fixed_b2a_emb_base = text_encoder(fixed_b2a_tokens.cuda().unsqueeze(0))[0].detach()
    del text_encoder, tokenizer  # free up some memory

    unet, vae_enc, vae_dec, net_disc_a, net_disc_b = accelerator.prepare(unet, vae_enc, vae_dec, net_disc_a, net_disc_b)
    net_lpips, optimizer_gen, optimizer_disc, train_dataloader, lr_scheduler_gen, lr_scheduler_disc = accelerator.prepare(
        net_lpips, optimizer_gen, optimizer_disc, train_dataloader, lr_scheduler_gen, lr_scheduler_disc
    )
    if accelerator.is_main_process:
        accelerator.init_trackers(args.tracker_project_name, config=dict(vars(args)))

    first_epoch = 0
    global_step = 0
    progress_bar = tqdm(range(0, args.max_train_steps), initial=global_step, desc="Steps",
        disable=not accelerator.is_local_main_process,)
    # turn off eff. attn for the disc
    for name, module in net_disc_a.named_modules():
        if "attn" in name:
            module.fused_attn = False
    for name, module in net_disc_b.named_modules():
        if "attn" in name:
            module.fused_attn = False

    for epoch in range(first_epoch, args.max_train_epochs):
        for step, batch in enumerate(train_dataloader):
            l_acc = [unet, net_disc_a, net_disc_b, vae_enc, vae_dec]
            with accelerator.accumulate(*l_acc):
                img_a = batch["pixel_values_src"].to(dtype=weight_dtype)
                img_b = batch["pixel_values_tgt"].to(dtype=weight_dtype)

                bsz = img_a.shape[0]
                fixed_a2b_emb = fixed_a2b_emb_base.repeat(bsz, 1, 1).to(dtype=weight_dtype)
                fixed_b2a_emb = fixed_b2a_emb_base.repeat(bsz, 1, 1).to(dtype=weight_dtype)
                timesteps = torch.tensor([noise_scheduler_1step.config.num_train_timesteps - 1] * bsz, device=img_a.device).long()

                """
                Cycle Objective
                """
                # A -> fake B -> rec A
                cyc_fake_b = CycleGAN_Turbo.forward_with_networks(img_a, "a2b", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_a2b_emb)
                cyc_rec_a = CycleGAN_Turbo.forward_with_networks(cyc_fake_b, "b2a", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_b2a_emb)
                loss_cycle_a = crit_cycle(cyc_rec_a, img_a) * args.lambda_cycle
                loss_cycle_a += net_lpips(cyc_rec_a, img_a).mean() * args.lambda_cycle_lpips
                # B -> fake A -> rec B
                cyc_fake_a = CycleGAN_Turbo.forward_with_networks(img_b, "b2a", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_b2a_emb)
                cyc_rec_b = CycleGAN_Turbo.forward_with_networks(cyc_fake_a, "a2b", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_a2b_emb)
                loss_cycle_b = crit_cycle(cyc_rec_b, img_b) * args.lambda_cycle
                loss_cycle_b += net_lpips(cyc_rec_b, img_b).mean() * args.lambda_cycle_lpips
                accelerator.backward(loss_cycle_a + loss_cycle_b, retain_graph=False)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(params_gen, args.max_grad_norm)
    
                optimizer_gen.step()
                lr_scheduler_gen.step()
                optimizer_gen.zero_grad()

                """
                Generator Objective (GAN) for task a->b and b->a (fake inputs)
                """
                fake_a = CycleGAN_Turbo.forward_with_networks(img_b, "b2a", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_b2a_emb)
                fake_b = CycleGAN_Turbo.forward_with_networks(img_a, "a2b", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_a2b_emb)
                loss_gan_a = net_disc_a(fake_b, for_G=True).mean() * args.lambda_gan
                loss_gan_b = net_disc_b(fake_a, for_G=True).mean() * args.lambda_gan
                accelerator.backward(loss_gan_a + loss_gan_b, retain_graph=False)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(params_gen, args.max_grad_norm)
                optimizer_gen.step()
                lr_scheduler_gen.step()
                optimizer_gen.zero_grad()
                optimizer_disc.zero_grad()

                """
                Identity Objective
                """
                idt_a = CycleGAN_Turbo.forward_with_networks(img_b, "a2b", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_a2b_emb)
                loss_idt_a = crit_idt(idt_a, img_b) * args.lambda_idt
                loss_idt_a += net_lpips(idt_a, img_b).mean() * args.lambda_idt_lpips
                idt_b = CycleGAN_Turbo.forward_with_networks(img_a, "b2a", vae_enc, unet, vae_dec, noise_scheduler_1step, timesteps, fixed_b2a_emb)
                loss_idt_b = crit_idt(idt_b, img_a) * args.lambda_idt
                loss_idt_b += net_lpips(idt_b, img_a).mean() * args.lambda_idt_lpips
                loss_g_idt = loss_idt_a + loss_idt_b
                accelerator.backward(loss_g_idt, retain_graph=False)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(params_gen, args.max_grad_norm)
                optimizer_gen.step()
                lr_scheduler_gen.step()
                optimizer_gen.zero_grad()

                """
                Discriminator for task a->b and b->a (fake inputs)
                """
                loss_D_A_fake = net_disc_a(fake_b.detach(), for_real=False).mean() * args.lambda_gan
                loss_D_B_fake = net_disc_b(fake_a.detach(), for_real=False).mean() * args.lambda_gan
                loss_D_fake = (loss_D_A_fake + loss_D_B_fake) * 0.5
                accelerator.backward(loss_D_fake, retain_graph=False)
                if accelerator.sync_gradients:
                    params_to_clip = list(net_disc_a.parameters()) + list(net_disc_b.parameters())
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
                optimizer_disc.step()
                lr_scheduler_disc.step()
                optimizer_disc.zero_grad()

                """
                Discriminator for task a->b and b->a (real inputs)
                """
                loss_D_A_real = net_disc_a(img_b, for_real=True).mean() * args.lambda_gan
                loss_D_B_real = net_disc_b(img_a, for_real=True).mean() * args.lambda_gan
                loss_D_real = (loss_D_A_real + loss_D_B_real) * 0.5
                accelerator.backward(loss_D_real, retain_graph=False)
                if accelerator.sync_gradients:
                    params_to_clip = list(net_disc_a.parameters()) + list(net_disc_b.parameters())
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
                optimizer_disc.step()
                lr_scheduler_disc.step()
                optimizer_disc.zero_grad()

            logs = {}
            logs["cycle_a"] = loss_cycle_a.detach().item()
            logs["cycle_b"] = loss_cycle_b.detach().item()
            logs["gan_a"] = loss_gan_a.detach().item()
            logs["gan_b"] = loss_gan_b.detach().item()
            logs["disc_a"] = loss_D_A_fake.detach().item() + loss_D_A_real.detach().item()
            logs["disc_b"] = loss_D_B_fake.detach().item() + loss_D_B_real.detach().item()
            logs["idt_a"] = loss_idt_a.detach().item()
            logs["idt_b"] = loss_idt_b.detach().item()

            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

                if accelerator.is_main_process:
                    eval_unet = accelerator.unwrap_model(unet)
                    eval_vae_enc = accelerator.unwrap_model(vae_enc)
                    eval_vae_dec = accelerator.unwrap_model(vae_dec)
                    if global_step % args.viz_freq == 1:
                        for tracker in accelerator.trackers:
                            if tracker.name == "wandb":
                                viz_img_a = batch["pixel_values_src"].to(dtype=weight_dtype)
                                viz_img_b = batch["pixel_values_tgt"].to(dtype=weight_dtype)
                                log_dict = {
                                    "train/real_a": [wandb.Image(viz_img_a[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(bsz)],
                                    "train/real_b": [wandb.Image(viz_img_b[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(bsz)],
                                }
                                log_dict["train/rec_a"] = [wandb.Image(cyc_rec_a[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(bsz)]
                                log_dict["train/rec_b"] = [wandb.Image(cyc_rec_b[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(bsz)]
                                log_dict["train/fake_b"] = [wandb.Image(fake_b[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(bsz)]
                                log_dict["train/fake_a"] = [wandb.Image(fake_a[idx].float().detach().cpu(), caption=f"idx={idx}") for idx in range(bsz)]
                                tracker.log(log_dict)
                                gc.collect()
                                torch.cuda.empty_cache()

                    if global_step % args.checkpointing_steps == 1:
                        outf = os.path.join(args.output_dir, "checkpoints", f"model_{global_step}.pkl")
                        sd = {}
                        sd["l_target_modules_encoder"] = l_modules_unet_encoder
                        sd["l_target_modules_decoder"] = l_modules_unet_decoder
                        sd["l_modules_others"] = l_modules_unet_others
                        sd["rank_unet"] = args.lora_rank_unet
                        sd["sd_encoder"] = get_peft_model_state_dict(eval_unet, adapter_name="default_encoder")
                        sd["sd_decoder"] = get_peft_model_state_dict(eval_unet, adapter_name="default_decoder")
                        sd["sd_other"] = get_peft_model_state_dict(eval_unet, adapter_name="default_others")
                        sd["rank_vae"] = args.lora_rank_vae
                        sd["vae_lora_target_modules"] = vae_lora_target_modules
                        sd["sd_vae_enc"] = eval_vae_enc.state_dict()
                        sd["sd_vae_dec"] = eval_vae_dec.state_dict()
                        torch.save(sd, outf)
                        gc.collect()
                        torch.cuda.empty_cache()

                    # compute val FID and DINO-Struct scores
                    if global_step % args.validation_steps == 1:
                        _timesteps = torch.tensor([noise_scheduler_1step.config.num_train_timesteps - 1] * 1, device="cuda").long()
                        net_dino = DinoStructureLoss()
                        """
                        Evaluate "A->B"
                        """
                        fid_output_dir = os.path.join(args.output_dir, f"fid-{global_step}/samples_a2b")
                        os.makedirs(fid_output_dir, exist_ok=True)
                        l_dino_scores_a2b = []
                        # get val input images from domain a
                        for idx, input_img_path in enumerate(tqdm(l_images_src_test)):
                            if idx > args.validation_num_images and args.validation_num_images > 0:
                                break
                            outf = os.path.join(fid_output_dir, f"{idx}.png")
                            with torch.no_grad():
                                input_img = T_val(Image.open(input_img_path).convert("RGB"))
                                img_a = transforms.ToTensor()(input_img)
                                img_a = transforms.Normalize([0.5], [0.5])(img_a).unsqueeze(0).cuda()
                                eval_fake_b = CycleGAN_Turbo.forward_with_networks(img_a, "a2b", eval_vae_enc, eval_unet,
                                    eval_vae_dec, noise_scheduler_1step, _timesteps, fixed_a2b_emb[0:1])
                                eval_fake_b_pil = transforms.ToPILImage()(eval_fake_b[0] * 0.5 + 0.5)
                                eval_fake_b_pil.save(outf)
                                a = net_dino.preprocess(input_img).unsqueeze(0).cuda()
                                b = net_dino.preprocess(eval_fake_b_pil).unsqueeze(0).cuda()
                                dino_ssim = net_dino.calculate_global_ssim_loss(a, b).item()
                                l_dino_scores_a2b.append(dino_ssim)
                        dino_score_a2b = np.mean(l_dino_scores_a2b)
                        gen_features = get_folder_features(fid_output_dir, model=feat_model, num_workers=0, num=None,
                            shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
                            mode="clean", custom_fn_resize=None, description="", verbose=True,
                            custom_image_tranform=None)
                        ed_mu, ed_sigma = np.mean(gen_features, axis=0), np.cov(gen_features, rowvar=False)
                        score_fid_a2b = frechet_distance(a2b_ref_mu, a2b_ref_sigma, ed_mu, ed_sigma)
                        print(f"step={global_step}, fid(a2b)={score_fid_a2b:.2f}, dino(a2b)={dino_score_a2b:.3f}")

                        """
                        compute FID for "B->A"
                        """
                        fid_output_dir = os.path.join(args.output_dir, f"fid-{global_step}/samples_b2a")
                        os.makedirs(fid_output_dir, exist_ok=True)
                        l_dino_scores_b2a = []
                        # get val input images from domain b
                        for idx, input_img_path in enumerate(tqdm(l_images_tgt_test)):
                            if idx > args.validation_num_images and args.validation_num_images > 0:
                                break
                            outf = os.path.join(fid_output_dir, f"{idx}.png")
                            with torch.no_grad():
                                input_img = T_val(Image.open(input_img_path).convert("RGB"))
                                img_b = transforms.ToTensor()(input_img)
                                img_b = transforms.Normalize([0.5], [0.5])(img_b).unsqueeze(0).cuda()
                                eval_fake_a = CycleGAN_Turbo.forward_with_networks(img_b, "b2a", eval_vae_enc, eval_unet,
                                    eval_vae_dec, noise_scheduler_1step, _timesteps, fixed_b2a_emb[0:1])
                                eval_fake_a_pil = transforms.ToPILImage()(eval_fake_a[0] * 0.5 + 0.5)
                                eval_fake_a_pil.save(outf)
                                a = net_dino.preprocess(input_img).unsqueeze(0).cuda()
                                b = net_dino.preprocess(eval_fake_a_pil).unsqueeze(0).cuda()
                                dino_ssim = net_dino.calculate_global_ssim_loss(a, b).item()
                                l_dino_scores_b2a.append(dino_ssim)
                        dino_score_b2a = np.mean(l_dino_scores_b2a)
                        gen_features = get_folder_features(fid_output_dir, model=feat_model, num_workers=0, num=None,
                            shuffle=False, seed=0, batch_size=8, device=torch.device("cuda"),
                            mode="clean", custom_fn_resize=None, description="", verbose=True,
                            custom_image_tranform=None)
                        ed_mu, ed_sigma = np.mean(gen_features, axis=0), np.cov(gen_features, rowvar=False)
                        score_fid_b2a = frechet_distance(b2a_ref_mu, b2a_ref_sigma, ed_mu, ed_sigma)
                        print(f"step={global_step}, fid(b2a)={score_fid_b2a}, dino(b2a)={dino_score_b2a:.3f}")
                        logs["val/fid_a2b"], logs["val/fid_b2a"] = score_fid_a2b, score_fid_b2a
                        logs["val/dino_struct_a2b"], logs["val/dino_struct_b2a"] = dino_score_a2b, dino_score_b2a
                        del net_dino  # free up memory

            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
            if global_step >= args.max_train_steps:
                break


if __name__ == "__main__":
    args = parse_args_unpaired_training()
    main(args)