--- tags: - merge - mergekit - cognitivecomputations/dolphin-2.9-llama3-8b - NousResearch/Hermes-2-Theta-Llama-3-8B base_model: - cognitivecomputations/dolphin-2.9-llama3-8b - NousResearch/Hermes-2-Theta-Llama-3-8B license: apache-2.0 --- ![](https://raw.githubusercontent.com/saucam/models/main/proteus.png) # 💧 Proteus-8B Proteus-8B is a merge of the following models using [Mergekit](https://github.com/arcee-ai/mergekit): * [cognitivecomputations/dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b) * [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B) ## 🧩 Configuration ```yamltokenizer_source: union tokenizer_source: union embed_slerp: true name: Proteus-8B models: - model: cognitivecomputations/dolphin-2.9-llama3-8b parameters: density: 0.5 weight: 0.4 - model: NousResearch/Hermes-2-Theta-Llama-3-8B parameters: density: 0.5 weight: 0.6 merge_method: dare_ties base_model: NousResearch/Hermes-2-Theta-Llama-3-8B parameters: int8_mask: true dtype: bfloat16 ``` ## Eval Results | Benchmark | Average | arc | gsm8k | hellaswag | mmlu | truthfulqa | winogrande | |-----------|---------:|----:|----:|---:|---------:|--------:|------:| | openllm | 70.67 | 63.48 | 78.77 | 82.94 | 64.71 | 56.71 | 77.43 | Detailed Results: https://github.com/saucam/model_evals/blob/main/saucam/Proteus-8B/README.md ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "saucam/Proteus-8B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```