Proyecto_1 / app.py
LiquidoNoNewtoniano's picture
Update app.py
b2c7600
raw
history blame
1.2 kB
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def image_to_text(image_paths):
images=[image_paths]
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds[0]
title = ""
description = ""
interface = gr.Interface(
fn=image_to_text,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.Textbox(),
title=title,
description=description,
enable_queue=True
)
interface.launch(debug=True)