Spaces:
Sleeping
Sleeping
LiquidoNoNewtoniano
commited on
Commit
•
26fe3ab
1
Parent(s):
46af2dd
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
3 |
import torch
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
7 |
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
8 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
9 |
|
|
|
|
|
|
|
|
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
model.to(device)
|
|
|
12 |
|
13 |
max_length = 16
|
14 |
num_beams = 4
|
@@ -25,15 +31,22 @@ def image_to_text(image_paths):
|
|
25 |
preds = [pred.strip() for pred in preds]
|
26 |
return preds[0]
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
title = ""
|
29 |
description = ""
|
30 |
|
31 |
interface = gr.Interface(
|
32 |
-
fn=
|
33 |
-
inputs=gr.Image(type="pil"),
|
34 |
-
outputs=gr.
|
35 |
title=title,
|
36 |
-
description=description
|
37 |
|
38 |
)
|
39 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer, DiffusionPipeline, DPMSolverMultistepScheduler
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
+
from diffusers.utils import export_to_video
|
6 |
|
7 |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
8 |
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
9 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
10 |
|
11 |
+
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
|
12 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
13 |
+
pipe.enable_model_cpu_offload()
|
14 |
+
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
model.to(device)
|
17 |
+
pipe = pipe.to(device)
|
18 |
|
19 |
max_length = 16
|
20 |
num_beams = 4
|
|
|
31 |
preds = [pred.strip() for pred in preds]
|
32 |
return preds[0]
|
33 |
|
34 |
+
def text_to_video(image_paths):
|
35 |
+
prompt = image_to_text(image_paths)
|
36 |
+
video_frames = pipe(prompt, num_inference_steps=25).frames
|
37 |
+
video_path = export_to_video(video_frames)
|
38 |
+
return video_frames
|
39 |
+
|
40 |
+
|
41 |
title = ""
|
42 |
description = ""
|
43 |
|
44 |
interface = gr.Interface(
|
45 |
+
fn=text_to_video,
|
46 |
+
inputs=gr.inputs.Image(type="pil"),
|
47 |
+
outputs=gr.Video(),
|
48 |
title=title,
|
49 |
+
description=description,
|
50 |
|
51 |
)
|
52 |
|