import gradio as gr from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler import torch import accelerate from PIL import Image from diffusers.utils import export_to_video model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def image_to_text(image_paths): images=[image_paths] pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds[0] def text_to_video(image_paths): prompt = image_to_text(image_paths) video_frames = pipe(prompt, num_inference_steps=25).frames video_path = export_to_video(video_frames) return video_frames title = "" description = "" interface = gr.Interface( fn=text_to_video, inputs=gr.Image(type="pil"), outputs=gr.Video(), title=title, description=description, ) interface.launch(debug=True)