File size: 8,314 Bytes
58486c5 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 9c2708e 43ac004 cb8f33a 43ac004 9c2708e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
import os
from langchain_community.vectorstores import FAISS, Chroma
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from pathlib import Path
# Set environment variable for Hugging Face API token
api_token = os.getenv("HF_TOKEN")
# LLM model options
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Set directory for persistent storage
default_persist_directory = './chroma_database/' # Ensure directory exists
# Load and split PDF document
def load_doc(list_file_path):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create or update vector database with Chroma and persistence
def create_db(splits):
embeddings = HuggingFaceEmbeddings()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embeddings,
persist_directory=default_persist_directory # Set persistence directory
)
vectordb.persist() # Ensure data is saved to chroma.sqlite3
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k
)
memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False
)
return qa_chain
# Initialize database with persistence
def initialize_database(list_file_obj, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path)
vector_db = create_db(doc_splits)
return vector_db, "Database created and persisted!"
# Initialize LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm_name = list_llm[llm_option]
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "QA chain initialized. Chatbot is ready!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
# Conversation handling
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
# Gradio UI setup
def demo():
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent performs retrieval augmented generation (RAG) on PDF documents. \
Please do not upload confidential documents.""")
with gr.Row():
with gr.Column(scale=86):
gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
db_btn = gr.Button("Create vector database")
db_progress = gr.Textbox(value="Not initialized", show_label=False)
gr.Markdown("<style>body { font-size: 16px; }</style><b>Select LLM and input parameters</b>")
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
with gr.Accordion("LLM input parameters", open=False):
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature")
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens")
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k")
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
with gr.Column(scale=200):
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Relevant context from the source document", open=False):
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
msg = gr.Textbox(placeholder="Ask a question", container=True)
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Set up Gradio events
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress])
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
outputs=[qa_chain, llm_progress]).then(lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
msg.submit(conversation, inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()
|