Robin-13b / app.py
hendrydong's picture
Upload 39 files
53a0ab0
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 Statistics and Machine Learning Research Group at HKUST. All rights reserved.
"""A simple shell chatbot implemented with lmflow APIs.
"""
import logging
import json
import os
import sys
sys.path.remove(os.path.abspath(os.path.dirname(sys.argv[0])))
import torch
import warnings
import gradio as gr
from dataclasses import dataclass, field
from transformers import HfArgumentParser
from typing import Optional
from lmflow.datasets.dataset import Dataset
from lmflow.pipeline.auto_pipeline import AutoPipeline
from lmflow.models.auto_model import AutoModel
from lmflow.args import ModelArguments, DatasetArguments, AutoArguments
MAX_BOXES = 20
logging.disable(logging.ERROR)
warnings.filterwarnings("ignore")
title = """
<h1 align="center">LMFlow-CHAT</h1>
<link rel="stylesheet" href="/path/to/styles/default.min.css">
<script src="/path/to/highlight.min.js"></script>
<script>hljs.highlightAll();</script>
<img src="https://optimalscale.github.io/LMFlow/_static/logo.png" alt="LMFlow" style="width: 30%; min-width: 60px; display: block; margin: auto; background-color: transparent;">
<p>LMFlow is in extensible, convenient, and efficient toolbox for finetuning large machine learning models, designed to be user-friendly, speedy and reliable, and accessible to the entire community.</p>
<p>We have thoroughly tested this toolkit and are pleased to make it available under <a class="reference external" href="https://github.com/OptimalScale/LMFlow">Github</a>.</p>
"""
css = """
#user {
float: right;
position:relative;
right:5px;
width:auto;
min-height:32px;
max-width: 60%
line-height: 32px;
padding: 2px 8px;
font-size: 14px;
background: #9DC284;
border-radius:5px;
margin:10px 0px;
}
#chatbot {
float: left;
position:relative;
right:5px;
width:auto;
min-height:32px;
max-width: 60%
line-height: 32px;
padding: 2px 8px;
font-size: 14px;
background:#7BA7D7;
border-radius:5px;
margin:10px 0px;
}
"""
@dataclass
class ChatbotArguments:
prompt_structure: Optional[str] = field(
default="###Human: {input_text}###Assistant:",
metadata={
"help": "prompt structure given user's input text"
},
)
end_string: Optional[str] = field(
default="#",
metadata={
"help": "end string mark of the chatbot's output"
},
)
max_new_tokens: Optional[int] = field(
default=1500,
metadata={
"help": "maximum number of generated tokens"
},
)
temperature: Optional[float] = field(
default=0.7,
metadata={
"help": "higher this value, more random the model output"
},
)
def main():
pipeline_name = "inferencer"
PipelineArguments = AutoArguments.get_pipeline_args_class(pipeline_name)
parser = HfArgumentParser((
ModelArguments,
PipelineArguments,
ChatbotArguments,
))
model_args, pipeline_args, chatbot_args = (
parser.parse_args_into_dataclasses()
)
model_args.model_name_or_path = "LMFlow/Full-Robin-13b-v2"
pipeline_args.deepspeed = "configs/ds_config_chatbot.json"
model_args.torch_dtype = "float16"
with open (pipeline_args.deepspeed, "r") as f:
ds_config = json.load(f)
model = AutoModel.get_model(
model_args,
tune_strategy='none',
ds_config=ds_config,
device=pipeline_args.device,
torch_dtype=torch.float16
)
# We don't need input data, we will read interactively from stdin
data_args = DatasetArguments(dataset_path=None)
dataset = Dataset(data_args)
inferencer = AutoPipeline.get_pipeline(
pipeline_name=pipeline_name,
model_args=model_args,
data_args=data_args,
pipeline_args=pipeline_args,
)
# Chats
model_name = model_args.model_name_or_path
if model_args.lora_model_path is not None:
model_name += f" + {model_args.lora_model_path}"
# context = (
# "You are a helpful assistant who follows the given instructions"
# " unconditionally."
# )
end_string = chatbot_args.end_string
prompt_structure = chatbot_args.prompt_structure
token_per_step = 4
def hist2context(hist):
context = ""
for query, response in hist:
context += prompt_structure.format(input_text=query)
if not (response is None):
context += response
return context
def chat_stream(query: str, history= None, **kwargs):
if history is None:
history = []
context = hist2context(history)
print_index = 0
context += prompt_structure.format(input_text=query)
context_ = context[-model.get_max_length():]
input_dataset = dataset.from_dict({
"type": "text_only",
"instances": [ { "text": context_ } ]
})
print(context_)
for response, flag_break in inferencer.stream_inference(context=context_, model=model, max_new_tokens=chatbot_args.max_new_tokens,
token_per_step=token_per_step, temperature=chatbot_args.temperature,
end_string=end_string, input_dataset=input_dataset):
delta = response[print_index:]
seq = response
print_index = len(response)
yield delta, history + [(query, seq)]
if flag_break:
break
def predict(input, history=None):
if history is None:
history = []
for response, history in chat_stream(input, history):
updates = []
for query, response in history:
updates.append(gr.update(visible=True, value="" + query))
updates.append(gr.update(visible=True, value="" + response))
if len(updates) < MAX_BOXES:
updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates))
yield [history] + updates
with gr.Blocks(css=css) as demo:
gr.HTML(title)
state = gr.State([])
text_boxes = []
for i in range(MAX_BOXES):
if i % 2 == 0:
text_boxes.append(gr.Markdown(visible=False, label="Q:", elem_id="user"))
else:
text_boxes.append(gr.Markdown(visible=False, label="A:", elem_id="chatbot"))
txt = gr.Textbox(
show_label=False,
placeholder="Enter text and press send.",
)
button = gr.Button("Send")
button.click(predict, [txt, state], [state] + text_boxes)
demo.queue().launch()
if __name__ == "__main__":
main()