SandraCLV's picture
Update app.py
30bd11b
raw
history blame
3.24 kB
import gradio as gr
from transformers import AutoProcessor, BlipForConditionalGeneration, AutoModelForCausalLM, AutoImageProcessor, VisionEncoderDecoderModel, AutoTokenizer
import io
import base64
# from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel
import torch
import open_clip
import openai
from huggingface_hub import hf_hub_download
# Carga el modelo de clasificaci贸n de imagen a texto
blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
# Carga el modelo de texto a voz
openai.api_key = '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'
model_id = "base"
#model_version = "2022-01-01"
whisper = openai.Model(model_id=model_id)
device = "cuda" if torch.cuda.is_available() else "cpu"
blip_model_large.to(device)
def generate_caption(processor, model, image, tokenizer=None, use_float_16=False):
inputs = processor(images=image, return_tensors="pt").to(device)
if use_float_16:
inputs = inputs.to(torch.float16)
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
if tokenizer is not None:
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
else:
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
def generate_caption_coca(model, transform, image):
im = transform(image).unsqueeze(0).to(device)
with torch.no_grad(), torch.cuda.amp.autocast():
generated = model.generate(im, seq_len=20)
return open_clip.decode(generated[0].detach()).split("<end_of_text>")[0].replace("<start_of_text>", "")
def generate_captions(image):
caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
print(caption_blip_large)
return caption_blip_large
# Define la funci贸n que convierte texto en voz
def text_to_speech(text):
# Genera el audio utilizando el modelo Whisper
response = whisper.generate(prompt=text)
print(response)
# Extrae el audio del resultado
audio = response.choices[0].audio
# Codifica el audio en base64
audio_base64 = base64.b64encode(audio).decode("utf-8")
# Devuelve el audio como un archivo MP3
return BytesIO(base64.b64decode(audio_base64))
# Define la interfaz de usuario utilizando Gradio
inputsImg = [
gr.Image(type="pil", label="Imagen"),
]
outputs = [ gr.Textbox(label="Caption generated by BLIP-large") ]
title = "Clasificaci贸n de imagen a texto y conversi贸n de texto a voz"
description = "Carga una imagen y obt茅n una descripci贸n de texto de lo que contiene la imagen, as铆 como un archivo de audio que lee el texto en voz alta."
examples = []
interface = gr.Interface(fn=generate_captions,
inputs=inputsImg,
outputs=outputs,
examples=examples,
title=title,
description=description)
interface.launch()