Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline,WhisperProcessor, WhisperForConditionalGeneration | |
import torch | |
import librosa | |
import datasets | |
from transformers.pipelines.pt_utils import KeyDataset | |
from tqdm.auto import tqdm | |
import logging | |
import time | |
import uuid | |
import soundfile as sf | |
from model import get_pretrained_model, language_to_models | |
# demo for a input given image transform into text interpretation, and those text put a speech text to be played | |
#text to speech code from https://huggingface.co/spaces/k2-fsa/text-to-speech/blob/main/app.py | |
image_to_text_model = pipeline("image-classification",model="microsoft/beit-base-patch16-224-pt22k-ft22k") | |
def build_html_output(s: str, style: str = "result_item_success"): | |
return f""" | |
<div class='result'> | |
<div class='result_item {style}'> | |
{s} | |
</div> | |
</div> | |
""" | |
def image_to_text(input_image): | |
# Convertir la imagen a texto | |
text_output = image_to_text_model(input_image)[0]['label'] | |
print(text_output) | |
#texts = transcriber(text_output) | |
return text_output | |
def text_to_speech(language: str, repo_id: str, text: str, sid: str, speed: float): | |
logging.info(f"Input text: {text}. sid: {sid}, speed: {speed}") | |
sid = int(sid) | |
tts = get_pretrained_model(repo_id, speed) | |
start = time.time() | |
audio = tts.generate(text, sid=sid) | |
end = time.time() | |
if len(audio.samples) == 0: | |
raise ValueError( | |
"Error in generating audios. Please read previous error messages." | |
) | |
duration = len(audio.samples) / audio.sample_rate | |
elapsed_seconds = end - start | |
rtf = elapsed_seconds / duration | |
info = f""" | |
Wave duration : {duration:.3f} s <br/> | |
Processing time: {elapsed_seconds:.3f} s <br/> | |
RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f} <br/> | |
""" | |
logging.info(info) | |
logging.info(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}") | |
filename = str(uuid.uuid4()) | |
filename = f"{filename}.wav" | |
sf.write( | |
filename, | |
audio.samples, | |
samplerate=audio.sample_rate, | |
subtype="PCM_16", | |
) | |
return filename, build_html_output(info) | |
demo = gr.Blocks() | |
with demo: | |
language_choices = list(language_to_models.keys()) | |
inputsImg=gr.Image(type='pil') | |
idx=0 | |
for txt in image_to_text(inputsImg): | |
output_txt[idx] = gr.Textbox(label=txt,lines=1,max_lines=1,value=txt,placeholder="Interpretation") | |
input_sid = gr.Textbox( | |
label="Speaker ID", | |
info="Speaker ID", | |
lines=1, | |
max_lines=1, | |
value="0", | |
placeholder="Speaker ID. Valid only for mult-speaker model") | |
input_speed = gr.Slider( | |
minimum=0.1, | |
maximum=10, | |
value=1, | |
step=0.1, | |
label="Speed (larger->faster; smaller->slower)") | |
text_to_speech(language_choices[0],language_to_models[language_choices[0]][0],txt,input_sid,input_speed) | |
output_audio[idx] = gr.Audio(label="Output") | |
output_info[idx] = gr.HTML(label="Info") | |
idx=idx+1 | |
gr.Interface(fn=text_to_speech, | |
title="Image to Text Interpretation", | |
inputs=inputsImg, | |
outputs=[output_txt,output_audio,input_sid,input_speed], | |
description="image to audio demo", | |
article = "", | |
).launch() |